IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v168y2021i3d10.1007_s10584-021-03240-8.html
   My bibliography  Save this article

Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea

Author

Listed:
  • Marianna V. P. Simões

    (Senckenberg Research Institute and Natural History Museum
    Goethe University Frankfurt
    Senckenberg German Entomological Institute (SDEI))

  • Hanieh Saeedi

    (Senckenberg Research Institute and Natural History Museum
    Goethe University Frankfurt
    OBIS Data Manager)

  • Marlon E. Cobos

    (University of Kansas)

  • Angelika Brandt

    (Senckenberg Research Institute and Natural History Museum)

Abstract

Empirical and theoretical studies suggest that marine species respond to ocean warming by shifting ranges poleward and/or into deeper depths. However, future distributional patterns of deep-sea organisms, which comprise the largest ecosystem of Earth, remain poorly known. We explore potential horizontal range shifts of benthic shallow-water and deep-sea Crustacea due to climatic changes within the remainder of the century, and discuss the results in light of species-specific traits related to invasiveness. Using a maximum entropy approach, we estimated the direction and magnitude of distributional shifts for 94 species belonging to 12 orders of benthic marine crustaceans, projected to the years 2050 and 2100. Distance, direction, and species richness shifts between climate zones were estimated conservatively, by considering only areas suitable, non-extrapolative, and adjacent to the currently known distributions. Our hypothesis is that species will present poleward range-shifts, based on results of previous studies. Results reveal idiosyncratic and species-specific responses, with prevailing poleward shifts and a decline of species richness at mid-latitudes, while more frequent shifts between temperate to polar regions were recovered. Shallow-water species are expected to shift longer distances than deep-sea species. Net gain of suitability is slightly higher than the net loss for shallow-water species, while for deep-sea species, the net loss is higher than the gain in all scenarios. Our estimates can be viewed as a set of hypotheses for future analytical and empirical studies, and will be useful in planning and executing strategic interventions and developing conservation strategies.

Suggested Citation

  • Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
  • Handle: RePEc:spr:climat:v:168:y:2021:i:3:d:10.1007_s10584-021-03240-8
    DOI: 10.1007/s10584-021-03240-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03240-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03240-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henn Ojaveer & Bella S Galil & Marnie L Campbell & James T Carlton & João Canning-Clode & Elizabeth J Cook & Alisha D Davidson & Chad L Hewitt & Anders Jelmert & Agnese Marchini & Cynthia H McKenzie &, 2015. "Classification of Non-Indigenous Species Based on Their Impacts: Considerations for Application in Marine Management," PLOS Biology, Public Library of Science, vol. 13(4), pages 1-13, April.
    2. Elvira S. Poloczanska & Christopher J. Brown & William J. Sydeman & Wolfgang Kiessling & David S. Schoeman & Pippa J. Moore & Keith Brander & John F. Bruno & Lauren B. Buckley & Michael T. Burrows & C, 2013. "Global imprint of climate change on marine life," Nature Climate Change, Nature, vol. 3(10), pages 919-925, October.
    3. Owens, Hannah L. & Campbell, Lindsay P. & Dornak, L. Lynnette & Saupe, Erin E. & Barve, Narayani & Soberón, Jorge & Ingenloff, Kate & Lira-Noriega, Andrés & Hensz, Christopher M. & Myers, Corinne E. &, 2013. "Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas," Ecological Modelling, Elsevier, vol. 263(C), pages 10-18.
    4. Mark J. Costello & Peter Tsai & Pui Shan Wong & Alan Kwok Lun Cheung & Zeenatul Basher & Chhaya Chaudhary, 2017. "Marine biogeographic realms and species endemicity," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    5. André Menegotto & Thiago F. Rangel, 2018. "Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    6. Jennifer M. Sunday & Amanda E. Bates & Nicholas K. Dulvy, 2012. "Thermal tolerance and the global redistribution of animals," Nature Climate Change, Nature, vol. 2(9), pages 686-690, September.
    7. Shcheglovitova, Mariya & Anderson, Robert P., 2013. "Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes," Ecological Modelling, Elsevier, vol. 269(C), pages 9-17.
    8. Malin L. Pinsky & Anne Maria Eikeset & Douglas J. McCauley & Jonathan L. Payne & Jennifer M. Sunday, 2019. "Greater vulnerability to warming of marine versus terrestrial ectotherms," Nature, Nature, vol. 569(7754), pages 108-111, May.
    9. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    10. Melo-Merino, Sara M. & Reyes-Bonilla, Héctor & Lira-Noriega, Andrés, 2020. "Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence," Ecological Modelling, Elsevier, vol. 415(C).
    11. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    2. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    3. Cesc Gordó-Vilaseca & Mark John Costello & Marta Coll & Alexander Jüterbock & Henning Reiss & Fabrice Stephenson, 2024. "Future trends of marine fish biomass distributions from the North Sea to the Barents Sea," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Andreas Schwarz Meyer & Alex L. Pigot & Cory Merow & Kristin Kaschner & Cristina Garilao & Kathleen Kesner-Reyes & Christopher H. Trisos, 2024. "Temporal dynamics of climate change exposure and opportunities for global marine biodiversity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. David A. Prieto-Torres & Luis A. Sánchez-González & Marco F. Ortiz-Ramírez & Jorge E. Ramírez-Albores & Erick A. García-Trejo & Adolfo G. Navarro-Sigüenza, 2021. "Climate warming affects spatio-temporal biodiversity patterns of a highly vulnerable Neotropical avifauna," Climatic Change, Springer, vol. 165(3), pages 1-20, April.
    6. Guillem Chust & Ernesto Villarino & Matthew McLean & Nova Mieszkowska & Lisandro Benedetti-Cecchi & Fabio Bulleri & Chiara Ravaglioli & Angel Borja & Iñigo Muxika & José A. Fernandes-Salvador & Leire , 2024. "Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    8. Azuaje-Rodríguez, Roxiris A. & Silva, Sofia Marques & Carlos, Caio J., 2022. "Not going with the flow: Ecological niche of a migratory seabird, the South American Tern Sterna hirundinacea," Ecological Modelling, Elsevier, vol. 463(C).
    9. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    10. Diederik Strubbe & Laura Jiménez & A. Márcia Barbosa & Amy J. S. Davis & Luc Lens & Carsten Rahbek, 2023. "Mechanistic models project bird invasions with accuracy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Jiménez, Laura & Soberón, Jorge & Christen, J. Andrés & Soto, Desireé, 2019. "On the problem of modeling a fundamental niche from occurrence data," Ecological Modelling, Elsevier, vol. 397(C), pages 74-83.
    12. Curtis Champion & James R. Lawson & Joanna Pardoe & Derrick O. Cruz & Ashley M. Fowler & Fabrice Jaine & Hayden T. Schilling & Melinda A. Coleman, 2023. "Multi-criteria analysis for rapid vulnerability assessment of marine species to climate change," Climatic Change, Springer, vol. 176(8), pages 1-20, August.
    13. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    14. Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    15. Cesar A Marchioro, 2016. "Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    16. Rotllan-Puig, Xavier & Traveset, Anna, 2021. "Determining the minimal background area for species distribution models: MinBAR package," Ecological Modelling, Elsevier, vol. 439(C).
    17. Moullec, Fabien & Barrier, Nicolas & Drira, Sabrine & Guilhaumon, François & Hattab, Tarek & Peck, Myron A. & Shin, Yunne-Jai, 2022. "Using species distribution models only may underestimate climate change impacts on future marine biodiversity," Ecological Modelling, Elsevier, vol. 464(C).
    18. Regina Gabriela Medina & Andrés Lira-Noriega & Ezequiel Aráoz & María Laura Ponssa, 2020. "Potential effects of climate change on a Neotropical frog genus: changes in the spatial diversity patterns of Leptodactylus (Anura, Leptodactylidae) and implications for their conservation," Climatic Change, Springer, vol. 161(4), pages 535-553, August.
    19. Boria, Robert A. & Blois, Jessica L., 2018. "The effect of large sample sizes on ecological niche models: Analysis using a North American rodent, Peromyscus maniculatus," Ecological Modelling, Elsevier, vol. 386(C), pages 83-88.
    20. Carlos Mestanza-Ramón & Robinson J. Herrera Feijoo & Cristhian Chicaiza-Ortiz & Isabel Domínguez Gaibor & Rubén G. Mateo, 2021. "Estimation of Current and Future Suitable Areas for Tapirus pinchaque in Ecuador," Sustainability, MDPI, vol. 13(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:168:y:2021:i:3:d:10.1007_s10584-021-03240-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.