IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v569y2019i7754d10.1038_s41586-019-1132-4.html
   My bibliography  Save this article

Greater vulnerability to warming of marine versus terrestrial ectotherms

Author

Listed:
  • Malin L. Pinsky

    (Rutgers University)

  • Anne Maria Eikeset

    (University of Oslo)

  • Douglas J. McCauley

    (University of California Santa Barbara
    University of California Santa Barbara)

  • Jonathan L. Payne

    (Stanford University)

  • Jennifer M. Sunday

    (McGill University)

Abstract

Understanding which species and ecosystems will be most severely affected by warming as climate change advances is important for guiding conservation and management. Both marine and terrestrial fauna have been affected by warming1,2 but an explicit comparison of physiological sensitivity between the marine and terrestrial realms has been lacking. Assessing how close populations live to their upper thermal limits has been challenging, in part because extreme temperatures frequently drive demographic responses3,4 and yet fauna can use local thermal refugia to avoid extremes5–7. Here we show that marine ectotherms experience hourly body temperatures that are closer to their upper thermal limits than do terrestrial ectotherms across all latitudes—but that this is the case only if terrestrial species can access thermal refugia. Although not a direct prediction of population decline, this thermal safety margin provides an index of the physiological stress caused by warming. On land, the smallest thermal safety margins were found for species at mid-latitudes where the hottest hourly body temperatures occurred; by contrast, the marine species with the smallest thermal safety margins were found near the equator. We also found that local extirpations related to warming have been twice as common in the ocean as on land, which is consistent with the smaller thermal safety margins at sea. Our results suggest that different processes will exacerbate thermal vulnerability across these two realms. Higher sensitivities to warming and faster rates of colonization in the marine realm suggest that extirpations will be more frequent and species turnover faster in the ocean. By contrast, terrestrial species appear to be more vulnerable to loss of access to thermal refugia, which would make habitat fragmentation and changes in land use critical drivers of species loss on land.

Suggested Citation

  • Malin L. Pinsky & Anne Maria Eikeset & Douglas J. McCauley & Jonathan L. Payne & Jennifer M. Sunday, 2019. "Greater vulnerability to warming of marine versus terrestrial ectotherms," Nature, Nature, vol. 569(7754), pages 108-111, May.
  • Handle: RePEc:nat:nature:v:569:y:2019:i:7754:d:10.1038_s41586-019-1132-4
    DOI: 10.1038/s41586-019-1132-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1132-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1132-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Schwarz Meyer & Alex L. Pigot & Cory Merow & Kristin Kaschner & Cristina Garilao & Kathleen Kesner-Reyes & Christopher H. Trisos, 2024. "Temporal dynamics of climate change exposure and opportunities for global marine biodiversity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Mark R. Payne & Gokhan Danabasoglu & Noel Keenlyside & Daniela Matei & Anna K. Miesner & Shuting Yang & Stephen G. Yeager, 2022. "Skilful decadal-scale prediction of fish habitat and distribution shifts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    4. Lisandro Benedetti-Cecchi & Amanda E. Bates & Giovanni Strona & Fabio Bulleri & Barbara Horta e Costa & Graham J. Edgar & Bernat Hereu & Dan C. Reed & Rick D. Stuart-Smith & Neville S. Barrett & David, 2024. "Marine protected areas promote stability of reef fish communities under climate warming," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Guillem Chust & Ernesto Villarino & Matthew McLean & Nova Mieszkowska & Lisandro Benedetti-Cecchi & Fabio Bulleri & Chiara Ravaglioli & Angel Borja & Iñigo Muxika & José A. Fernandes-Salvador & Leire , 2024. "Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Mahalik, Mantu Kumar & Mallick, Hrushikesh & Padhan, Hemachandra, 2021. "Do educational levels influence the environmental quality? The role of renewable and non-renewable energy demand in selected BRICS countries with a new policy perspective," Renewable Energy, Elsevier, vol. 164(C), pages 419-432.
    7. Imran Khaliq & Christian Rixen & Florian Zellweger & Catherine H. Graham & Martin M. Gossner & Ian R. McFadden & Laura Antão & Jakob Brodersen & Shyamolina Ghosh & Francesco Pomati & Ole Seehausen & T, 2024. "Warming underpins community turnover in temperate freshwater and terrestrial communities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. S. I. Anderson & A. D. Barton & S. Clayton & S. Dutkiewicz & T. A. Rynearson, 2021. "Marine phytoplankton functional types exhibit diverse responses to thermal change," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Moullec, Fabien & Barrier, Nicolas & Drira, Sabrine & Guilhaumon, François & Hattab, Tarek & Peck, Myron A. & Shin, Yunne-Jai, 2022. "Using species distribution models only may underestimate climate change impacts on future marine biodiversity," Ecological Modelling, Elsevier, vol. 464(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:569:y:2019:i:7754:d:10.1038_s41586-019-1132-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.