IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0006021.html
   My bibliography  Save this article

Schistosoma japonicum transmission risk maps at present and under climate change in mainland China

Author

Listed:
  • Gengping Zhu
  • Jingyu Fan
  • A Townsend Peterson

Abstract

Background: The South-to-North Water Diversion (SNWD) project is designed to channel fresh water from the Yangtze River north to more industrialized parts of China. An important question is whether future climate change and dispersal via the SNWD may synergistically favor a northward expansion of species involved in hosting and transmitting schistosomiasis in China, specifically the intermediate host, Oncomelania hupensis. Methodology/ Principal findings: In this study, climate spaces occupied by the four subspecies of O. hupensis (O. h. hupensis, O. h. robertsoni, O. h. guangxiensis and O. h. tangi) were estimated, and niche conservatism tested among each pair of subspecies. Fine-tuned Maxent (fMaxent) and ensemble models were used to anticipate potential distributions of O. hupensis under future climate change scenarios. We were largely unable to reject the null hypothesis that climatic niches are conserved among the four subspecies, so factors other than climate appear to account for the divergence of O. hupensis populations across mainland China. Both model approaches indicated increased suitability and range expansion in O. h. hupensis in the future; an eastward and northward shift in O. h. robertsioni and O. h. guangxiensis, respectively; and relative distributional stability in O. h. gangi. Conclusions/Significance: The southern parts of the Central Route of SNWD will coincide with suitable areas for O. h. hupensis in 2050–2060; its suitable areas will also expand northward along the southern parts of the Eastern Route by 2080–2090. Our results call for rigorous monitoring and surveillance of schistosomiasis along the southern Central Route and Eastern Route of the SNWD in a future, warmer China. Author summary: The South-to-North Water Diversion (SNWD) project is designed to channel fresh water from the Yangtze River north to more industrialized parts of China. An important question is whether future climate change and dispersal via the SNWD may synergistically favor northward expansion of schistosomiasis in China. Our models indicated increased suitability and range expansion in Oncomelania h. hupensis in the future; an eastward and northward shift in O. h. robertsioni and O. h. guangxiensis, respectively; and relative stability in O. h. gangi. The southern Central Route of SNWD will coincide with suitable areas for O. h. hupensis in 2050–2060; its suitable areas will also expand northward along the southern Eastern Route in 2080–2090. Our results call for rigorous monitoring and surveillance of schistosomiasis along the southern Central Route and Eastern Route of the SNWD in a future, warmer China.

Suggested Citation

  • Gengping Zhu & Jingyu Fan & A Townsend Peterson, 2017. "Schistosoma japonicum transmission risk maps at present and under climate change in mainland China," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(10), pages 1-17, October.
  • Handle: RePEc:plo:pntd00:0006021
    DOI: 10.1371/journal.pntd.0006021
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006021
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0006021&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0006021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Owens, Hannah L. & Campbell, Lindsay P. & Dornak, L. Lynnette & Saupe, Erin E. & Barve, Narayani & Soberón, Jorge & Ingenloff, Kate & Lira-Noriega, Andrés & Hensz, Christopher M. & Myers, Corinne E. &, 2013. "Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas," Ecological Modelling, Elsevier, vol. 263(C), pages 10-18.
    2. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    3. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    2. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    3. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    4. David A. Prieto-Torres & Luis A. Sánchez-González & Marco F. Ortiz-Ramírez & Jorge E. Ramírez-Albores & Erick A. García-Trejo & Adolfo G. Navarro-Sigüenza, 2021. "Climate warming affects spatio-temporal biodiversity patterns of a highly vulnerable Neotropical avifauna," Climatic Change, Springer, vol. 165(3), pages 1-20, April.
    5. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    6. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).
    7. Diederik Strubbe & Laura Jiménez & A. Márcia Barbosa & Amy J. S. Davis & Luc Lens & Carsten Rahbek, 2023. "Mechanistic models project bird invasions with accuracy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Jiménez, Laura & Soberón, Jorge & Christen, J. Andrés & Soto, Desireé, 2019. "On the problem of modeling a fundamental niche from occurrence data," Ecological Modelling, Elsevier, vol. 397(C), pages 74-83.
    9. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    10. Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    11. Azuaje-Rodríguez, Roxiris A. & Silva, Sofia Marques & Carlos, Caio J., 2022. "Not going with the flow: Ecological niche of a migratory seabird, the South American Tern Sterna hirundinacea," Ecological Modelling, Elsevier, vol. 463(C).
    12. Owens, Hannah L. & Campbell, Lindsay P. & Dornak, L. Lynnette & Saupe, Erin E. & Barve, Narayani & Soberón, Jorge & Ingenloff, Kate & Lira-Noriega, Andrés & Hensz, Christopher M. & Myers, Corinne E. &, 2013. "Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas," Ecological Modelling, Elsevier, vol. 263(C), pages 10-18.
    13. Abdallah M Samy & A Townsend Peterson, 2016. "Climate Change Influences on the Global Potential Distribution of Bluetongue Virus," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-12, March.
    14. Jiménez, L. & Soberón, J., 2022. "Estimating the fundamental niche: Accounting for the uneven availability of existing climates in the calibration area," Ecological Modelling, Elsevier, vol. 464(C).
    15. Stefan Vilges de Oliveira & Luis E Escobar & A Townsend Peterson & Rodrigo Gurgel-Gonçalves, 2013. "Potential Geographic Distribution of Hantavirus Reservoirs in Brazil," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    16. Regina Gabriela Medina & Andrés Lira-Noriega & Ezequiel Aráoz & María Laura Ponssa, 2020. "Potential effects of climate change on a Neotropical frog genus: changes in the spatial diversity patterns of Leptodactylus (Anura, Leptodactylidae) and implications for their conservation," Climatic Change, Springer, vol. 161(4), pages 535-553, August.
    17. Carlos Mestanza-Ramón & Robinson J. Herrera Feijoo & Cristhian Chicaiza-Ortiz & Isabel Domínguez Gaibor & Rubén G. Mateo, 2021. "Estimation of Current and Future Suitable Areas for Tapirus pinchaque in Ecuador," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    18. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    19. Alsamadisi, Adam G. & Tran, Liem T. & Papeş, Monica, 2020. "Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models," Ecological Modelling, Elsevier, vol. 415(C).
    20. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0006021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.