IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v164y2021i3d10.1007_s10584-021-02985-6.html
   My bibliography  Save this article

Techniques for constructing climate scenarios for stress test applications

Author

Listed:
  • Christine M. Albano

    (Desert Research Institute)

  • Maureen I. McCarthy

    (Desert Research Institute
    University of Nevada, Reno)

  • Michael D. Dettinger

    (University of California San Diego)

  • Stephanie A. McAfee

    (University of Nevada, Reno)

Abstract

In this review, we provide guidance on the construction of climate scenarios for stress tests—scenarios that represent disruptive climatic events and can be used to assess the impacts of climate and weather risks at the level of detail that is necessary to identify specific adaptation actions or strategies. While there is a wealth of guidance on scenario-based climate adaptation planning, this guidance typically assumes the selection and use of decadal to century-long time segments of downscaled climate model projections, rather than the creation of a customized scenario depicting a specific extreme event. We address this gap by synthesizing a variety of data sources and analytical techniques for constructing climate scenarios for stress tests that are customized to address specific end-users’ needs. We then illustrate the development and application of climate scenarios with a case study that explores water sustainability under changing climate in the Truckee and Carson River basins of California and Nevada. Finally, we assess the potential advantages and disadvantages of the different data sources and analytical techniques described to provide guidance on which are best suited for an intended application based on the system of study, the stakeholders involved, and the resources available. Ultimately, this work is intended to provide the building blocks with which scientist-stakeholder teams can produce their own stress test scenarios to explore place-based weather and climate risks.

Suggested Citation

  • Christine M. Albano & Maureen I. McCarthy & Michael D. Dettinger & Stephanie A. McAfee, 2021. "Techniques for constructing climate scenarios for stress test applications," Climatic Change, Springer, vol. 164(3), pages 1-25, February.
  • Handle: RePEc:spr:climat:v:164:y:2021:i:3:d:10.1007_s10584-021-02985-6
    DOI: 10.1007/s10584-021-02985-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-02985-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-02985-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul C. Stern & Kristie L. Ebi & Robin Leichenko & Richard Stuart Olson & John D. Steinbruner & Robert Lempert, 2013. "Managing risk with climate vulnerability science," Nature Climate Change, Nature, vol. 3(7), pages 607-609, July.
    2. Christine Albano & Michael Dettinger & Maureen McCarthy & Kevin Schaller & Toby Welborn & Dale Cox, 2016. "Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 879-900, January.
    3. Richard Seager & Mark Cane & Naomi Henderson & Dong-Eun Lee & Ryan Abernathey & Honghai Zhang, 2019. "Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases," Nature Climate Change, Nature, vol. 9(7), pages 517-522, July.
    4. Theodore G. Shepherd & Emily Boyd & Raphael A. Calel & Sandra C. Chapman & Suraje Dessai & Ioana M. Dima-West & Hayley J. Fowler & Rachel James & Douglas Maraun & Olivia Martius & Catherine A. Senior , 2018. "Storylines: an alternative approach to representing uncertainty in physical aspects of climate change," Climatic Change, Springer, vol. 151(3), pages 555-571, December.
    5. Christine M. Albano & Michael D. Dettinger & Maureen I. McCarthy & Kevin D. Schaller & Toby L. Welborn & Dale A. Cox, 2016. "Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 879-900, January.
    6. Abdul Tariq & Robert Jay Lempert & John Riverson & Marla Schwartz & Neil Berg, 2017. "A climate stress test of Los Angeles’ water quality plans," Climatic Change, Springer, vol. 144(4), pages 625-639, October.
    7. Robert Lempert, 2013. "Scenarios that illuminate vulnerabilities and robust responses," Climatic Change, Springer, vol. 117(4), pages 627-646, April.
    8. Suraje Dessai & Mike Hulme, 2004. "Does climate adaptation policy need probabilities?," Climate Policy, Taylor & Francis Journals, vol. 4(2), pages 107-128, June.
    9. Douglas Maraun & Theodore G. Shepherd & Martin Widmann & Giuseppe Zappa & Daniel Walton & José M. Gutiérrez & Stefan Hagemann & Ingo Richter & Pedro M. M. Soares & Alex Hall & Linda O. Mearns, 2017. "Towards process-informed bias correction of climate change simulations," Nature Climate Change, Nature, vol. 7(11), pages 764-773, November.
    10. W. Hazeleger & B.J.J.M. van den Hurk & E. Min & G.J. van Oldenborgh & A.C. Petersen & D.A. Stainforth & E. Vasileiadou & L.A. Smith, 2015. "Tales of future weather," Nature Climate Change, Nature, vol. 5(2), pages 107-113, February.
    11. Michael Dettinger & F. Martin Ralph & Mimi Hughes & Tapash Das & Paul Neiman & Dale Cox & Gary Estes & David Reynolds & Robert Hartman & Daniel Cayan & Lucy Jones, 2012. "Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1085-1111, February.
    12. Maria Carmen Lemos & Christine J. Kirchhoff & Vijay Ramprasad, 2012. "Narrowing the climate information usability gap," Nature Climate Change, Nature, vol. 2(11), pages 789-794, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carè, R. & Fatima, R. & Boitan, I.A., 2024. "Central banks and climate risks: Where we are and where we are going?," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1200-1229.
    2. David J. Lawrence & Amber N. Runyon & John E. Gross & Gregor W. Schuurman & Brian W. Miller, 2021. "Divergent, plausible, and relevant climate futures for near- and long-term resource planning," Climatic Change, Springer, vol. 167(3), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. E. M. Fischer & U. Beyerle & L. Bloin-Wibe & C. Gessner & V. Humphrey & F. Lehner & A. G. Pendergrass & S. Sippel & J. Zeder & R. Knutti, 2023. "Storylines for unprecedented heatwaves based on ensemble boosting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Richard H. Moss, 2016. "Assessing decision support systems and levels of confidence to narrow the climate information “usability gap”," Climatic Change, Springer, vol. 135(1), pages 143-155, March.
    4. Declan Conway & Robert J. Nicholls & Sally Brown & Mark G. L. Tebboth & William Neil Adger & Bashir Ahmad & Hester Biemans & Florence Crick & Arthur F. Lutz & Ricardo Safra Campos & Mohammed Said & Ch, 2019. "The need for bottom-up assessments of climate risks and adaptation in climate-sensitive regions," Nature Climate Change, Nature, vol. 9(7), pages 503-511, July.
    5. Shelley Gustafson & Angela Joehl Cadena & Chinh Cong Ngo & Ammar Kawash & Ienkate Saenghkaew & Paul Hartman, 2018. "Merging science into community adaptation planning processes: a cross-site comparison of four distinct areas of the Lower Mekong Basin," Climatic Change, Springer, vol. 149(1), pages 91-106, July.
    6. Richard Moss, 2016. "Assessing decision support systems and levels of confidence to narrow the climate information “usability gap”," Climatic Change, Springer, vol. 135(1), pages 143-155, March.
    7. Jean P. Palutikof & Roger B. Street & Edward P. Gardiner, 2019. "Decision support platforms for climate change adaptation: an overview and introduction," Climatic Change, Springer, vol. 153(4), pages 459-476, April.
    8. Diana Liverman, 2016. "U.S. National climate assessment gaps and research needs: overview, the economy and the international context," Climatic Change, Springer, vol. 135(1), pages 173-186, March.
    9. Mariachiara Piraina & Paolo Trucco, 2022. "Emergency management capabilities of interdependent systems: framework for analysis," Environment Systems and Decisions, Springer, vol. 42(2), pages 149-176, June.
    10. Nicholas J. Leach & Christopher D. Roberts & Matthias Aengenheyster & Daniel Heathcote & Dann M. Mitchell & Vikki Thompson & Tim Palmer & Antje Weisheimer & Myles R. Allen, 2024. "Heatwave attribution based on reliable operational weather forecasts," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Jonathan E. Suk & Kristie L. Ebi & David Vose & Willy Wint & Neil Alexander & Koen Mintiens & Jan C. Semenza, 2014. "Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change," IJERPH, MDPI, vol. 11(2), pages 1-18, February.
    12. Liu, Guangqiang & Zeng, Qing & Lei, Juan, 2022. "Dynamic risks from climate policy uncertainty: A case study for the natural gas market," Resources Policy, Elsevier, vol. 79(C).
    13. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    14. Savin Chand & Scott Power & Kevin Walsh & Neil Holbrook & Kathleen McInnes & Kevin Tory & Hamish Ramsay & Ron Hoeke & Anthony S. Kiem, 2023. "Climate processes and drivers in the Pacific and global warming: a review for informing Pacific planning agencies," Climatic Change, Springer, vol. 176(2), pages 1-16, February.
    15. Chris Knudson & Zack Guido, 2019. "The missing middle of climate services: layering multiway, two-way, and one-way modes of communicating seasonal climate forecasts," Climatic Change, Springer, vol. 157(1), pages 171-187, November.
    16. S. Lorenz & S. Dessai & J. Paavola & P. Forster, 2015. "The communication of physical science uncertainty in European National Adaptation Strategies," Climatic Change, Springer, vol. 132(1), pages 143-155, September.
    17. Arun S. Malik & Stephen C. Smith, 2012. "Adaptation To Climate Change In Low-Income Countries: Lessons From Current Research And Needs From Future Research," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-22.
    18. Mehryar, Sara & Sasson, Idan & Surminski, Swenja, 2022. "Supporting urban adaptation to climate change: what role can resilience measurement tools play?," LSE Research Online Documents on Economics 113367, London School of Economics and Political Science, LSE Library.
    19. Abdul Tariq & Robert Jay Lempert & John Riverson & Marla Schwartz & Neil Berg, 2017. "A climate stress test of Los Angeles’ water quality plans," Climatic Change, Springer, vol. 144(4), pages 625-639, October.
    20. Kuik, Onno & Zhou, Fujin & Ciullo, Alessio & Brusselaers, Jan, 2022. "How vulnerable is Europe to severe climate-related natural disasters abroad? A dynamic CGE analysis of the international financial and economic impacts of a large hurricane in the southern USA," Conference papers 333438, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:164:y:2021:i:3:d:10.1007_s10584-021-02985-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.