IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i2p879-900.html
   My bibliography  Save this article

Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA

Author

Listed:
  • Christine Albano
  • Michael Dettinger
  • Maureen McCarthy
  • Kevin Schaller
  • Toby Welborn
  • Dale Cox

Abstract

In the Sierra Nevada mountains (USA), and geographically similar areas across the globe where human development is expanding, extreme winter storm and flood risks are expected to increase with changing climate, heightening the need for communities to assess risks and better prepare for such events. In this case study, we demonstrate a novel approach to examining extreme winter storm and flood risks. We incorporated high-resolution atmospheric–hydrologic modeling of the ARkStorm extreme winter storm scenario with multiple modes of engagement with practitioners, including a series of facilitated discussions and a tabletop emergency management exercise, to develop a regional assessment of extreme storm vulnerabilities, mitigation options, and science needs in the greater Lake Tahoe region of Northern Nevada and California, USA. Through this process, practitioners discussed issues of concern across all phases of the emergency management life cycle, including preparation, response, recovery, and mitigation. Interruption of transportation, communications, and interagency coordination were among the most pressing concerns, and specific approaches for addressing these issues were identified, including prepositioning resources, diversifying communications systems, and improving coordination among state, tribal, and public utility practitioners. Science needs included expanding real-time monitoring capabilities to improve the precision of meteorological models and enhance situational awareness, assessing vulnerabilities of critical infrastructure, and conducting cost–benefit analyses to assess opportunities to improve both natural and human-made infrastructure to better withstand extreme storms. Our approach and results can be used to support both land use and emergency planning activities aimed toward increasing community resilience to extreme winter storm hazards in mountainous regions. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • Christine Albano & Michael Dettinger & Maureen McCarthy & Kevin Schaller & Toby Welborn & Dale Cox, 2016. "Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 879-900, January.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:2:p:879-900
    DOI: 10.1007/s11069-015-2003-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-2003-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-2003-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tapash Das & Michael Dettinger & Daniel Cayan & Hugo Hidalgo, 2011. "Potential increase in floods in California’s Sierra Nevada under future climate projections," Climatic Change, Springer, vol. 109(1), pages 71-94, December.
    2. Xin Miao & David Banister & Yanhong Tang, 2013. "Embedding resilience in emergency resource management to cope with natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1389-1404, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariachiara Piraina & Paolo Trucco, 2022. "Emergency management capabilities of interdependent systems: framework for analysis," Environment Systems and Decisions, Springer, vol. 42(2), pages 149-176, June.
    2. Christine M. Albano & Maureen I. McCarthy & Michael D. Dettinger & Stephanie A. McAfee, 2021. "Techniques for constructing climate scenarios for stress test applications," Climatic Change, Springer, vol. 164(3), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christine M. Albano & Michael D. Dettinger & Maureen I. McCarthy & Kevin D. Schaller & Toby L. Welborn & Dale A. Cox, 2016. "Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 879-900, January.
    2. Robert Coats & Mariza Costa-Cabral & John Riverson & John Reuter & Goloka Sahoo & Geoffrey Schladow & Brent Wolfe, 2013. "Projected 21st century trends in hydroclimatology of the Tahoe basin," Climatic Change, Springer, vol. 116(1), pages 51-69, January.
    3. Xin Miao & Yanhong Tang & Bao Xi, 2014. "The role of coupling and embeddedness in risk evolution: rethinking the snow event in early 2008, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 53-61, March.
    4. Jie Zhao & Ji Yun Lee & Dane Camenzind & Michael Wolcott & Kristin Lewis & Olivia Gillham, 2023. "Multi-Component Resilience Assessment Framework for a Supply Chain System," Sustainability, MDPI, vol. 15(7), pages 1-25, April.
    5. Yi Lu & Jiuping Xu, 2014. "The progress of emergency response and rescue in China: a comparative analysis of Wenchuan and Lushan earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 421-444, November.
    6. Ke Zhang & Jae Eun Lee, 2024. "Assessing the Operational Capability of Disaster and Emergency Management Resources: Using Analytic Hierarchy Process," Sustainability, MDPI, vol. 16(10), pages 1-18, May.
    7. Guido Franco & Daniel Cayan & Susanne Moser & Michael Hanemann & Myoung-Ae Jones, 2011. "Second California Assessment: integrated climate change impacts assessment of natural and managed systems. Guest editorial," Climatic Change, Springer, vol. 109(1), pages 1-19, December.
    8. L. Wang & P. Gelder & J. Vrijling & S. Maskey & R. Ranasinghe, 2015. "Risk-Averse Economic Optimization in the Adaptation of River Dikes to Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 359-377, January.
    9. Suwan Shen & Ray H. Chang & Karl Kim & Megan Julian, 2022. "Challenges to maintaining disaster relief supply chains in island communities: disaster preparedness and response in Honolulu, Hawai’i," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1829-1855, November.
    10. Beth Barnes & Sarah Dunn & Sean Wilkinson, 2019. "Natural hazards, disaster management and simulation: a bibliometric analysis of keyword searches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 813-840, June.
    11. Jia-Ying Sun & Lang-Yu Zhou & Jun-Yuan Deng & Chao-Yong Zhang & Hui-Ge Xing, 2024. "Spatio-Temporal Analysis of Urban Emergency Response Resilience During Public Health Crises: A Case Study of Wuhan," Sustainability, MDPI, vol. 16(20), pages 1-25, October.
    12. John Riverson & Robert Coats & Mariza Costa-Cabral & Michael Dettinger & John Reuter & Goloka Sahoo & Geoffrey Schladow, 2013. "Modeling the transport of nutrients and sediment loads into Lake Tahoe under projected climatic changes," Climatic Change, Springer, vol. 116(1), pages 35-50, January.
    13. Ratih Dyah Kusumastuti & N. Nurmala & A. Arviansyah & Sigit Sulistiyo Wibowo, 2022. "Indicators of community preparedness for fast-onset disasters: a systematic literature review and case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 787-821, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:2:p:879-900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.