IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v160y2020i3d10.1007_s10584-019-02640-1.html
   My bibliography  Save this article

Conspicuous temperature extremes over Southeast Asia: seasonal variations under 1.5 °C and 2 °C global warming

Author

Listed:
  • Shoupeng Zhu

    (Nanjing University of Information Science & Technology
    Max Planck Institute for Meteorology)

  • Fei Ge

    (Chengdu University of Information Technology
    Max Planck Institute for Meteorology)

  • Yi Fan

    (Nanjing University of Information Science & Technology
    Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • Ling Zhang

    (Nanjing University of Information Science & Technology)

  • Frank Sielmann

    (University of Hamburg)

  • Klaus Fraedrich

    (Max Planck Institute for Meteorology)

  • Xiefei Zhi

    (Nanjing University of Information Science & Technology)

Abstract

Guided by the Paris Agreement, the IPCC Special Report on Global Warming of 1.5 °C reported potential risks of climate change at different global warming levels (GWLs). To provide fundamental information on future temperature extremes over Southeast Asia (SEA), projected changes in temperature extreme indices are evaluated for different seasons at 1.5 °C and 2 °C GWLs against the historical reference period of 1976–2005 based on the ensemble of CORDEX simulations. Results show that the temperature indices increase significantly across the Indochina Peninsula and Maritime Continent at both GWLs except for decreasing daily temperature range (DTR) in the dry season, with more pronounced magnitudes at 2 °C GWL. Moreover, the regionally averaged ensemble medians of the indices show various changes over different subregions. At 1.5 °C and 2 °C GWLs, most pronounced increases of threshold indices. i.e. summer days (SU) and tropical nights (TR), are projected in Sumatra and Sulawesi for both wet and dry seasons. The warm spell duration (WSDI) increases generally, with strongest magnitudes for Sumatra and Sulawesi (Philippines and Sulawesi) in the wet (dry) season. On the other hand, significant increases of warm days and nights can also be observed at 2 °C GWL compared to 1.5 °C, particularly in the dry season, suggesting the high sensitivity of temperature extremes over the SEA. The projected potentially conspicuous temperature extremes under global warming of 1.5 °C and 2 °C primarily concentrate on the densely populated coastal regions of the main islands, showing the necessity of restricting global warming to 1.5 °C aiming at the eradication and reduction of regional climate stress for the human system in the developing countries over the SEA.

Suggested Citation

  • Shoupeng Zhu & Fei Ge & Yi Fan & Ling Zhang & Frank Sielmann & Klaus Fraedrich & Xiefei Zhi, 2020. "Conspicuous temperature extremes over Southeast Asia: seasonal variations under 1.5 °C and 2 °C global warming," Climatic Change, Springer, vol. 160(3), pages 343-360, June.
  • Handle: RePEc:spr:climat:v:160:y:2020:i:3:d:10.1007_s10584-019-02640-1
    DOI: 10.1007/s10584-019-02640-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02640-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02640-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flavio Lehner & Clara Deser & Benjamin M. Sanderson, 2018. "Future risk of record-breaking summer temperatures and its mitigation," Climatic Change, Springer, vol. 146(3), pages 363-375, February.
    2. Shang-Ping Xie & Clara Deser & Gabriel A. Vecchi & Matthew Collins & Thomas L. Delworth & Alex Hall & Ed Hawkins & Nathaniel C. Johnson & Christophe Cassou & Alessandra Giannini & Masahiro Watanabe, 2015. "Towards predictive understanding of regional climate change," Nature Climate Change, Nature, vol. 5(10), pages 921-930, October.
    3. Christoph Schär & Pier Luigi Vidale & Daniel Lüthi & Christoph Frei & Christian Häberli & Mark A. Liniger & Christof Appenzeller, 2004. "The role of increasing temperature variability in European summer heatwaves," Nature, Nature, vol. 427(6972), pages 332-336, January.
    4. Carl-Friedrich Schleussner & Peter Pfleiderer & Erich M. Fischer, 2017. "In the observational record half a degree matters," Nature Climate Change, Nature, vol. 7(7), pages 460-462, July.
    5. Douglas Maraun & Theodore G. Shepherd & Martin Widmann & Giuseppe Zappa & Daniel Walton & José M. Gutiérrez & Stefan Hagemann & Ingo Richter & Pedro M. M. Soares & Alex Hall & Linda O. Mearns, 2017. "Towards process-informed bias correction of climate change simulations," Nature Climate Change, Nature, vol. 7(11), pages 764-773, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    2. Inga Dailidienė & Inesa Servaitė & Remigijus Dailidė & Erika Vasiliauskienė & Lolita Rapolienė & Ramūnas Povilanskas & Donatas Valiukas, 2023. "Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities)," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    3. Tjaša Pogačar & Zala Žnidaršič & Lučka Kajfež Bogataj & Zalika Črepinšek, 2020. "Steps Towards Comprehensive Heat Communication in the Frame of a Heat Health Warning System in Slovenia," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    4. Jorge García Molinos & Ian Donohue, 2014. "Downscaling the non-stationary effect of climate forcing on local-scale dynamics: the importance of environmental filters," Climatic Change, Springer, vol. 124(1), pages 333-346, May.
    5. Barbara Vojvodíková & Iva Tichá & Anna Starzewska-Sikorska, 2022. "Implementing Nature-Based Solutions in Urban Spaces in the Context of the Sense of Danger That Citizens May Feel," Land, MDPI, vol. 11(10), pages 1-21, October.
    6. Stefan Muthers & Andreas Matzarakis & Elisabeth Koch, 2010. "Climate Change and Mortality in Vienna—A Human Biometeorological Analysis Based on Regional Climate Modeling," IJERPH, MDPI, vol. 7(7), pages 1-13, July.
    7. Hailin Wang & Bo Qiu & Hanrui Liu & Zhengguang Zhang, 2023. "Doubling of surface oceanic meridional heat transport by non-symmetry of mesoscale eddies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Srinivasan, Venkatraman & Kumar, Praveen, 2015. "Emergent and divergent resilience behavior in catastrophic shift systems," Ecological Modelling, Elsevier, vol. 298(C), pages 87-105.
    9. Yiru Jia & Jifu Liu & Lanlan Guo & Zhifei Deng & Jiaoyang Li & Hao Zheng, 2021. "Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    10. Aatishya Mohanty & Nattavudh Powdthavee & Cheng Keat Tang & Andrew J. Oswald, 2024. "Temperature Variability and Natural Disasters," Papers 2409.14936, arXiv.org.
    11. A. Reder & M. Iturbide & S. Herrera & G. Rianna & P. Mercogliano & J. M. Gutiérrez, 2018. "Assessing variations of extreme indices inducing weather-hazards on critical infrastructures over Europe—the INTACT framework," Climatic Change, Springer, vol. 148(1), pages 123-138, May.
    12. T. Hlásny & J. Holuša & P. Štěpánek & M. Turčáni & N. Polčák, 2011. "Expected impacts of climate change on forests: Czech Republic as a case study," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 57(10), pages 422-431.
    13. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    14. Ralph Catalano & Tim Bruckner & Kirk Smith & Katherine Saxton, 2012. "Temperature oscillations may shorten male lifespan via natural selection in utero," Climatic Change, Springer, vol. 110(3), pages 697-707, February.
    15. Jürgen Junk & Klaus Goergen & Andreas Krein, 2019. "Future Heat Waves in Different European Capitals Based on Climate Change Indicators," IJERPH, MDPI, vol. 16(20), pages 1-13, October.
    16. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    17. Chen, Ping-Yu & Chen, Chi-Chung & Chang, Chia-Lin, 2011. "Multiple Threshold Effects for Temperature and Mortality," MPRA Paper 35521, University Library of Munich, Germany.
    18. M. Mortezapour & B. Menounos & P. L. Jackson & A. R. Erler, 2022. "Future Snow Changes over the Columbia Mountains, Canada, using a Distributed Snow Model," Climatic Change, Springer, vol. 172(1), pages 1-24, May.
    19. Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Electrical power generation under policy constrained water-energy nexus," Applied Energy, Elsevier, vol. 210(C), pages 568-579.
    20. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:160:y:2020:i:3:d:10.1007_s10584-019-02640-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.