IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v57y2011i10id103-2010-jfs.html
   My bibliography  Save this article

Expected impacts of climate change on forests: Czech Republic as a case study

Author

Listed:
  • T. Hlásny

    (Department of Ecology and Biodiversity of Forest Ecosystems, National Forest Centre - Forest Research Institute, Zvolen, Slovakia
    Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • J. Holuša

    (Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • P. Štěpánek

    (Czech Hydrometeorological Institute, Brno, Czech Republic)

  • M. Turčáni

    (Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • N. Polčák

    (Faculty of Natural Science, Matej Bel University, Banská Bystrica, Slovakia)

Abstract

We provide fundamental information about the future development of selected climate elements in relation to anticipated threat to forests in the Czech Republic. All analyses were carried out in relation to four elevation zones with specific potential forest vegetation - up to 350 m a.s.l. (oak dominance), 350-600 m a.s.l. (beech dominance), 600-900 m a.s.l. (beech-fir dominance), 900-1,100 m a.s.l. (spruce dominance). We found out that while the projected increase in mean annual air temperature is almost constant over the Czech Republic (+3.25-3.5°C in the distant future), the frequency of heat spells at lower elevations is expected to increase dramatically compared to higher elevations. The precipitation totals during the vegetation season are projected to increase in the near future by up to 10% and to decrease in the distant future by up to 10% over all vegetation zones. In general, drought is presumed to become a key limiting factor at lower elevations, while increased temperature along with the prolonged vegetation season at higher elevations can be beneficial to forest vegetation. Consequently, northward progression of forest tree species and retraction of the species lower distribution range are a generic response pattern. Such impacts are presumed to be accompanied by changes in the distribution and population dynamics of pests and pathogens. Mainly the impacts on two key forest pests, Ips typographus and Lymantria dispar, are discussed.

Suggested Citation

  • T. Hlásny & J. Holuša & P. Štěpánek & M. Turčáni & N. Polčák, 2011. "Expected impacts of climate change on forests: Czech Republic as a case study," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 57(10), pages 422-431.
  • Handle: RePEc:caa:jnljfs:v:57:y:2011:i:10:id:103-2010-jfs
    DOI: 10.17221/103/2010-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/103/2010-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/103/2010-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/103/2010-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoph Schär & Pier Luigi Vidale & Daniel Lüthi & Christoph Frei & Christian Häberli & Mark A. Liniger & Christof Appenzeller, 2004. "The role of increasing temperature variability in European summer heatwaves," Nature, Nature, vol. 427(6972), pages 332-336, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    2. Inga Dailidienė & Inesa Servaitė & Remigijus Dailidė & Erika Vasiliauskienė & Lolita Rapolienė & Ramūnas Povilanskas & Donatas Valiukas, 2023. "Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities)," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    3. Tjaša Pogačar & Zala Žnidaršič & Lučka Kajfež Bogataj & Zalika Črepinšek, 2020. "Steps Towards Comprehensive Heat Communication in the Frame of a Heat Health Warning System in Slovenia," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    4. Jorge García Molinos & Ian Donohue, 2014. "Downscaling the non-stationary effect of climate forcing on local-scale dynamics: the importance of environmental filters," Climatic Change, Springer, vol. 124(1), pages 333-346, May.
    5. Barbara Vojvodíková & Iva Tichá & Anna Starzewska-Sikorska, 2022. "Implementing Nature-Based Solutions in Urban Spaces in the Context of the Sense of Danger That Citizens May Feel," Land, MDPI, vol. 11(10), pages 1-21, October.
    6. Stefan Muthers & Andreas Matzarakis & Elisabeth Koch, 2010. "Climate Change and Mortality in Vienna—A Human Biometeorological Analysis Based on Regional Climate Modeling," IJERPH, MDPI, vol. 7(7), pages 1-13, July.
    7. Srinivasan, Venkatraman & Kumar, Praveen, 2015. "Emergent and divergent resilience behavior in catastrophic shift systems," Ecological Modelling, Elsevier, vol. 298(C), pages 87-105.
    8. Yiru Jia & Jifu Liu & Lanlan Guo & Zhifei Deng & Jiaoyang Li & Hao Zheng, 2021. "Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    9. Aatishya Mohanty & Nattavudh Powdthavee & Cheng Keat Tang & Andrew J. Oswald, 2024. "Temperature Variability and Natural Disasters," Papers 2409.14936, arXiv.org.
    10. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    11. Ralph Catalano & Tim Bruckner & Kirk Smith & Katherine Saxton, 2012. "Temperature oscillations may shorten male lifespan via natural selection in utero," Climatic Change, Springer, vol. 110(3), pages 697-707, February.
    12. Jürgen Junk & Klaus Goergen & Andreas Krein, 2019. "Future Heat Waves in Different European Capitals Based on Climate Change Indicators," IJERPH, MDPI, vol. 16(20), pages 1-13, October.
    13. Chen, Ping-Yu & Chen, Chi-Chung & Chang, Chia-Lin, 2011. "Multiple Threshold Effects for Temperature and Mortality," MPRA Paper 35521, University Library of Munich, Germany.
    14. Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Electrical power generation under policy constrained water-energy nexus," Applied Energy, Elsevier, vol. 210(C), pages 568-579.
    15. Fischer, Björn & Goldberg, Valeri & Bernhofer, Christian, 2008. "Effect of a coupled soil water–plant gas exchange on forest energy fluxes: Simulations with the coupled vegetation–boundary layer model HIRVAC," Ecological Modelling, Elsevier, vol. 214(2), pages 75-82.
    16. Arthur Charpentier, 2011. "On the return period of the 2003 heat wave," Climatic Change, Springer, vol. 109(3), pages 245-260, December.
    17. Michael Donadelli & Marcus Jüppner & Antonio Paradiso & Christian Schlag, 2021. "Computing Macro-Effects and Welfare Costs of Temperature Volatility: A Structural Approach," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 347-394, August.
    18. Berlemann, Michael & Eurich, Marina, 2021. "Natural hazard risk and life satisfaction – Empirical evidence for hurricanes," Ecological Economics, Elsevier, vol. 190(C).
    19. Fuhrer, Jurg & Beniston, Martin & Calanca, Pierluigi & Torriani, Daniele Simone, 2007. "Alternative Hedging Strategies in Maize Production to Cope with Climate Variability and Change," 101st Seminar, July 5-6, 2007, Berlin Germany 9275, European Association of Agricultural Economists.
    20. Psikuta, Agnes & Allegrini, Jonas & Koelblen, Barbara & Bogdan, Anna & Annaheim, Simon & Martínez, Natividad & Derome, Dominique & Carmeliet, Jan & Rossi, René M., 2017. "Thermal manikins controlled by human thermoregulation models for energy efficiency and thermal comfort research – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1315-1330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:57:y:2011:i:10:id:103-2010-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.