IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v153y2019i1d10.1007_s10584-019-02387-9.html
   My bibliography  Save this article

Quantifying the effects of solar geoengineering on vegetation

Author

Listed:
  • Katherine Dagon

    (National Center for Atmospheric Research)

  • Daniel P. Schrag

    (Harvard University)

Abstract

Climate change will have significant impacts on vegetation and biodiversity. Solar geoengineering has potential to reduce the climate effects of greenhouse gas emissions through albedo modification, yet more research is needed to better understand how these techniques might impact terrestrial ecosystems. Here, we utilize the fully coupled version of the Community Earth System Model to run transient solar geoengineering simulations designed to stabilize radiative forcing starting mid-century, relative to the Representative Concentration Pathway 6 (RCP6) scenario. Using results from 100-year simulations, we analyze model output through the lens of ecosystem-relevant metrics. We find that solar geoengineering improves the conservation outlook under climate change, but there are still potential impacts on terrestrial vegetation. We show that rates of warming and the climate velocity of temperature are minimized globally under solar geoengineering by the end of the century, while trends persist over land in the Northern Hemisphere. Moisture is an additional constraint on vegetation, and in the tropics the climate velocity of precipitation dominates over that of temperature. Shifts in the amplitude of temperature and precipitation seasonal cycles have implications for vegetation phenology. Different metrics for vegetation productivity also show decreases under solar geoengineering relative to RCP6, but could be related to the model parameterization of nutrient cycling. The coupling of water and carbon cycles is found to be an important mechanism for understanding changes in ecosystems under solar geoengineering.

Suggested Citation

  • Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.
  • Handle: RePEc:spr:climat:v:153:y:2019:i:1:d:10.1007_s10584-019-02387-9
    DOI: 10.1007/s10584-019-02387-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02387-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02387-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ricke, Katharine L & Cole, Jason N S & Curry, Charles L & Irvine, Peter J & Ji, Duoying & Kravitz, Ben & MacMartin, Douglas G & Robock, Alan & Rasch, Philip J & Keith, David & Egill Kristjánsson, Jó, 2014. "A multi-model assessment of regional climate disparities caused by solar geoengineering," Scholarly Articles 23936192, Harvard Kennedy School of Government.
    2. Jonathan Proctor & Solomon Hsiang & Jennifer Burney & Marshall Burke & Wolfram Schlenker, 2018. "Estimating global agricultural effects of geoengineering using volcanic eruptions," Nature, Nature, vol. 560(7719), pages 480-483, August.
    3. Steven I. Higgins & Simon Scheiter, 2012. "Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally," Nature, Nature, vol. 488(7410), pages 209-212, August.
    4. Toshihiko Masui & Kenichi Matsumoto & Yasuaki Hijioka & Tsuguki Kinoshita & Toru Nozawa & Sawako Ishiwatari & Etsushi Kato & P. Shukla & Yoshiki Yamagata & Mikiko Kainuma, 2011. "An emission pathway for stabilization at 6 Wm −2 radiative forcing," Climatic Change, Springer, vol. 109(1), pages 59-76, November.
    5. Junichi Fujino, Rajesh Nair, Mikiko Kainuma, Toshihiko Masui and Yuzuru Matsuoka, 2006. "Multi-gas Mitigation Analysis on Stabilization Scenarios Using Aim Global Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 343-354.
    6. Akihiko Ito, 2017. "Solar radiation management and ecosystem functional responses," Climatic Change, Springer, vol. 142(1), pages 53-66, May.
    7. Richard A. Betts & Olivier Boucher & Matthew Collins & Peter M. Cox & Peter D. Falloon & Nicola Gedney & Deborah L. Hemming & Chris Huntingford & Chris D. Jones & David M. H. Sexton & Mark J. Webb, 2007. "Projected increase in continental runoff due to plant responses to increasing carbon dioxide," Nature, Nature, vol. 448(7157), pages 1037-1041, August.
    8. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    9. Scott R. Loarie & Philip B. Duffy & Healy Hamilton & Gregory P. Asner & Christopher B. Field & David D. Ackerly, 2009. "The velocity of climate change," Nature, Nature, vol. 462(7276), pages 1052-1055, December.
    10. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    11. David W. Keith & Douglas G. MacMartin, 2015. "A temporary, moderate and responsive scenario for solar geoengineering," Nature Climate Change, Nature, vol. 5(3), pages 201-206, March.
    12. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    2. Dubravka Milić & Snežana Radenković & Dimitrije Radišić & Andrijana Andrić & Tijana Nikolić & Ante Vujić, 2019. "Stability and changes in the distribution of Pipiza hoverflies (Diptera, Syrphidae) in Europe under projected future climate conditions," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-19, September.
    3. Karyn Tabor & Jennifer Hewson & Hsin Tien & Mariano González-Roglich & David Hole & John W. Williams, 2018. "Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation," Land, MDPI, vol. 7(3), pages 1-14, July.
    4. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    5. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    6. Jane A. Flegal & Aarti Gupta, 2018. "Evoking equity as a rationale for solar geoengineering research? Scrutinizing emerging expert visions of equity," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 45-61, February.
    7. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    8. Sajid Khan & Zishan Ahmad Wani & Rameez Ahmad & Kailash S. Gaira & Susheel Verma, 2024. "Time series analysis of climatic variability and trends in Shiwalik to Pir Panjal mountain range in the Indian western Himalaya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20355-20377, August.
    9. Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
    10. Lazarus Chapungu & Luxon Nhamo & Roberto Cazzolla Gatti & Munyaradzi Chitakira, 2020. "Quantifying Changes in Plant Species Diversity in a Savanna Ecosystem Through Observed and Remotely Sensed Data," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    11. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    12. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.
    13. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    14. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
    15. Huicong An & Xiaorong Zhang & Jiaqi Ye, 2024. "Analysis of Vegetation Environmental Stress and the Lag Effect in Countries along the “Six Economic Corridors”," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    16. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    17. Kathleen A. Alexander & Marcos Carzolio & Douglas Goodin & Eric Vance, 2013. "Climate Change is Likely to Worsen the Public Health Threat of Diarrheal Disease in Botswana," IJERPH, MDPI, vol. 10(4), pages 1-29, March.
    18. Stergios Pirintsos & Luca Paoli & Stefano Loppi & Kiriakos Kotzabasis, 2011. "Photosynthetic performance of lichen transplants as early indicator of climatic stress along an altitudinal gradient in the arid Mediterranean area," Climatic Change, Springer, vol. 107(3), pages 305-328, August.
    19. Roberto Ambrosini & Riccardo Borgoni & Diego Rubolini & Beatrice Sicurella & Wolfgang Fiedler & Franz Bairlein & Stephen R Baillie & Robert A Robinson & Jacquie A Clark & Fernando Spina & Nicola Saino, 2014. "Modelling the Progression of Bird Migration with Conditional Autoregressive Models Applied to Ringing Data," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    20. Lei Zhang & Zhinong Jing & Zuyao Li & Yang Liu & Shengzuo Fang, 2019. "Predictive Modeling of Suitable Habitats for Cinnamomum Camphora (L.) Presl Using Maxent Model under Climate Change in China," IJERPH, MDPI, vol. 16(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:153:y:2019:i:1:d:10.1007_s10584-019-02387-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.