IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v42y2011i5p593-604.html
   My bibliography  Save this article

Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia

Author

Listed:
  • Edward Kato
  • Claudia Ringler
  • Mahmud Yesuf
  • Elizabeth Bryan

Abstract

"This study investigates the impact of different soil and water conservation technologies on the variance of crop production in Ethiopia to determine the risk implications of the different technologies in different regions and rainfall zones. Given the production risks posed by climate change, such information can be used by decision makers to identify appropriate agricultural practices that act as a buffer against climate change. Using a household- and plot-level data set, we apply the Just and Pope framework using a Cobb-Douglas production function to investigate the impact of various soil and water conservation technologies on average crop yields and the variance of crop yields, while controlling for several household- and plot-level factors. Results show that soil and water conservation investments perform differently in different rainfall areas and regions of Ethiopia, which underscores the importance of careful geographical targeting when promoting and scaling up soil and water conservation technologies. We find that although soil bunds, stone bunds, grass strips, waterways, and contours all have very significant positive impacts on average crop yields in low-rainfall areas, only soil bunds have significant risk-reducing effects in these areas with low agricultural potential. We also find that irrigation and use of improved seeds have insignificant risk-reducing effects in low-rainfall areas, suggesting that—as currently implemented—these interventions may not be appropriate adaptation strategies for these environments. Regionally, in the low-rainfall areas we find significant spatial heterogeneity, with soil bunds being risk reducing in Oromiya and Amhara, and stone bunds, grass strips, and waterways being risk reducing in the Southern Nations, Nationalities, and Peoples Region. Irrigation was only risk reducing in the high-rainfall areas of Benishangul-Gumuz. These results remain robust even after controlling for the major crops grown on the plot. Resu
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
  • Handle: RePEc:bla:agecon:v:42:y:2011:i:5:p:593-604
    DOI: j.1574-0862.2011.00539.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1574-0862.2011.00539.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1574-0862.2011.00539.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Menale Kassie & John Pender & Mahmud Yesuf & Gunnar Kohlin & Randy Bluffstone & Elias Mulugeta, 2008. "Estimating returns to soil conservation adoption in the northern Ethiopian highlands," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 213-232, March.
    2. Nkonya, Ephraim & Pender, John & Kaizzi, Kayuki C. & Kato, Edward & Mugarura, Samuel & Ssali, Henry & Muwonge, James, 2008. "Linkages between land management, land degradation, and poverty in Sub-Saharan Africa: The case of Uganda," Research reports 159, International Food Policy Research Institute (IFPRI).
    3. Fidele Byiringiro & Thomas Reardon, 1996. "Farm productivity in Rwanda: effects of farm size, erosion, and soil conservation investments," Agricultural Economics, International Association of Agricultural Economists, vol. 15(2), pages 127-136, November.
    4. Dercon, Stefan, 2004. "Growth and shocks: evidence from rural Ethiopia," Journal of Development Economics, Elsevier, vol. 74(2), pages 309-329, August.
    5. Yesuf, Mahmud & Bluffstone, Randy, 2007. "Risk aversion in low income countries: Experimental evidence from Ethiopia," IFPRI discussion papers 715, International Food Policy Research Institute (IFPRI).
    6. Deressa, Temesgen & Hassan, R. M. & Alemu, Tekie & Yesuf, Mahmud & Ringler, Claudia, 2008. "Analyzing the determinants of farmers' choice of adaptation methods and perceptions of climate change in the Nile Basin of Ethiopia:," IFPRI discussion papers 798, International Food Policy Research Institute (IFPRI).
    7. John M. Antle, 1987. "Econometric Estimation of Producers' Risk Attitudes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(3), pages 509-522.
    8. Nkonya, Ephraim M. & Pender, John L. & Jagger, Pamela & Sserunkuuma, Dick & Kaizzi, Crammer & Ssali, Henry, 2004. "Strategies for sustainable land management and poverty reduction in Uganda:," Research reports 133, International Food Policy Research Institute (IFPRI).
    9. Robert Kates, 2000. "Cautionary Tales: Adaptation and the Global Poor," Climatic Change, Springer, vol. 45(1), pages 5-17, April.
    10. Hans G. P. Jansen & John Pender & Amy Damon & Willem Wielemaker & Rob Schipper, 2006. "Policies for sustainable development in the hillside areas of Honduras: a quantitative livelihoods approach," Agricultural Economics, International Association of Agricultural Economists, vol. 34(2), pages 141-153, March.
    11. Just, Richard E. & Pope, Rulon D., 1978. "Stochastic specification of production functions and economic implications," Journal of Econometrics, Elsevier, vol. 7(1), pages 67-86, February.
    12. Griffin, Ronald C. & Montgomery, John M. & Rister, M. Edward, 1987. "Selecting Functional Form In Production Function Analysis," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 12(2), pages 1-12, December.
    13. Pender, John & Ssewanyana, Sarah & Edward, Kato & Nkonya, Ephraim M., 2004. "Linkages between poverty and land management in rural Uganda: evidence from the Uganda National Household Survey, 1999/00," EPTD discussion papers 122, International Food Policy Research Institute (IFPRI).
    14. H. El-Shaer & C. Rosenzweig & A. Iglesias & M. Eid & D. Hillel, 1997. "Impact of climate change on possible scenarios for Egyptian agriculture in the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 1(3), pages 233-250, September.
    15. Di Falco, Salvatore & Perrings, Charles, 2005. "Crop biodiversity, risk management and the implications of agricultural assistance," Ecological Economics, Elsevier, vol. 55(4), pages 459-466, December.
    16. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    17. Jansen, Hans G. P. & Pender, John L. & Damon, Amy & Schipper, Rob, 2006. "Rural development policies and sustainable land use in the hillside areas of Honduras: a quantitative livelihoods approach," Research reports 147, International Food Policy Research Institute (IFPRI).
    18. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    19. Yesuf, Mahmud & Bluffstone, Randy, 2008. "How can African agriculture adapt to climate change: Risk aversion in low-income countries: Experimental evidence from Ethiopia," Research briefs 15(16), International Food Policy Research Institute (IFPRI).
    20. Kim, Kwansoo & Chavas, Jean-Paul, 2003. "Technological change and risk management: an application to the economics of corn production," Agricultural Economics, Blackwell, vol. 29(2), pages 125-142, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kato, E., 2009. "Soil and water conservation technologies: a buffer against production risk in the face of climate change?: insights from the Nile Basin in Ethiopia," IWMI Working Papers H042477, International Water Management Institute.
    2. Kato, Edward & Nkonya, Ephraim & Place, Frank & Mwanjalolo, Majaliwa, 2010. "An econometric investigation of impacts of sustainable land management practices on soil carbon and yield risk: A potential for climate change mitigation," IFPRI discussion papers 1038, International Food Policy Research Institute (IFPRI).
    3. Kato, Edward & Nkonya, Ephraim & Place, Frank M., 2011. "Heterogeneous treatment effects of integrated soil fertility management on crop productivity: Evidence from Nigeria," IFPRI discussion papers 1089, International Food Policy Research Institute (IFPRI).
    4. Tanui, Joseph & Groeneveld, Rolf & Klomp, Jeroen & Mowo, Jeremiahs & Ierland, Ekko C. van, 2013. "Explaining investments in sustainable land management: The role of various income sources in the smallholder farming systems of western Kenya," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 161275, African Association of Agricultural Economists (AAAE).
    5. Soltani, Arezoo & Angelsen, Arild & Eid, Tron & Naieni, Mohammad Saeid Noori & Shamekhi, Taghi, 2012. "Poverty, sustainability, and household livelihood strategies in Zagros, Iran," Ecological Economics, Elsevier, vol. 79(C), pages 60-70.
    6. Tankari, Mahamadou Roufahi, 2015. "Action Levers For A Sustainable Farmland Management In Niger," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 3(4), pages 1-12, October.
    7. Tran Quang Tuyen & Steven Lim & Michael P. Cameron & Vu Van Huong, 2014. "Farmland loss and livelihood outcomes: a microeconometric analysis of household surveys in Vietnam," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 19(3), pages 423-444, July.
    8. Kassie, Menale & Yesuf, Mahmud & Köhlin, Gunnar, 2008. "The Role of Production Risk in Sustainable Land-Management Technology Adoption in the Ethiopian Highlands," RFF Working Paper Series dp-08-15-efd, Resources for the Future.
    9. Hailemariam Teklewold & Menale Kassie & Bekele Shiferaw, 2013. "Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 597-623, September.
    10. Jolejole-Foreman, Maria Christina & Baylis, Katherine R. & Lipper, Leslie, 2012. "Land Degradation’s Implications on Agricultural Value of Production in Ethiopia: A look inside the bowl," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126251, International Association of Agricultural Economists.
    11. Skevas, Theodoros & Stefanou, Spiro E. & Oude Lansink, Alfons, 2014. "Pesticide use, environmental spillovers and efficiency: A DEA risk-adjusted efficiency approach applied to Dutch arable farming," European Journal of Operational Research, Elsevier, vol. 237(2), pages 658-664.
    12. Rahimzadeh, Aghaghia, 2017. "Political ecology of climate change: Shifting orchards and a temporary landscape of opportunity," World Development Perspectives, Elsevier, vol. 6(C), pages 25-31.
    13. De Pinto, Alessandro & Robertson, Richard D. & Obiri, Beatrice Darko, 2013. "Adoption of climate change mitigation practices by risk-averse farmers in the Ashanti Region, Ghana," Ecological Economics, Elsevier, vol. 86(C), pages 47-54.
    14. Nolan, Elizabeth & Santos, Paulo, 2012. "Insurance premiums and GM traits," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 125942, International Association of Agricultural Economists.
    15. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    16. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    17. Sauer, Johannes & Zilberman, David, 2009. "Innovation Behaviour At Farm Level – Selection And Identification," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51073, Agricultural Economics Society.
    18. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    19. Ayenew, Habtamu Yesigat & Sauer, Johannes & Abate-Kassa, Getachew, 2016. "Cost of Risk Exposure, Farm Disinvestment and Adaptation to Climate Uncertainties: The Case of Arable Farms in the EU," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235595, Agricultural and Applied Economics Association.
    20. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:42:y:2011:i:5:p:593-604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.