IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i8d10.1007_s10668-023-03476-7.html
   My bibliography  Save this article

Time series analysis of climatic variability and trends in Shiwalik to Pir Panjal mountain range in the Indian western Himalaya

Author

Listed:
  • Sajid Khan

    (BGSB University Rajouri)

  • Zishan Ahmad Wani

    (BGSB University Rajouri)

  • Rameez Ahmad

    (University of Kashmir)

  • Kailash S. Gaira

    (G.B. Pant National Institute of Himalayan Environment (NIHE))

  • Susheel Verma

    (BGSB University Rajouri
    University of Jammu)

Abstract

The Himalaya represents the most fragile ecosystem in the world, signifying its sensitivity towards global climate change. In the current scenario, the Himalaya needs to assess the climatic change trends at the regional level. To investigate climatic trends, we analysed the long-term (1980–2020) climatic data (maximum temperature—TMax and minimum temperature—TMin, precipitation, and relative humidity—RH) collected by the five different meteorological stations from Shiwalik to Pir Panjal mountain range of Jammu province. The nonparametric Mann–Kendall test was used to analyse the significance of climatic change trends for temperature, precipitation, and RH data on seasonal and annual scales, whereas the nonparametric Sen’s estimator of the slope was applied to quantify the magnitude of climatic change trends. The results reveal that the Jammu province region received 53% of annual precipitation from Western Disturbances and 47% from Indian Summer Monsoon. The contribution of Western Disturbances was greater towards the northern region of Jammu Province, while the southern lower region was substantially influenced by ISM. With substantial inter-station variations, our results indicated a significant increasing trend of TMax only for Banihal, while all the studied stations except Jammu exhibited a significant increasing trend of TMin. For the entire Jammu province, a significant increasing trend of TMax was observed for the spring season. On an annual scale, the increasing rate of changes was observed more for TMin (0.066 °C) than TMax (0.016 °C) of Jammu province while a nonsignificant declining rate of change was exhibited for precipitation (− 0.098 mm a−1). The shifting pattern in temperature and precipitation could have serious environmental implications that will greatly influence the biodiversity and ecological stability of the region.

Suggested Citation

  • Sajid Khan & Zishan Ahmad Wani & Rameez Ahmad & Kailash S. Gaira & Susheel Verma, 2024. "Time series analysis of climatic variability and trends in Shiwalik to Pir Panjal mountain range in the Indian western Himalaya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20355-20377, August.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03476-7
    DOI: 10.1007/s10668-023-03476-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03476-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03476-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Irfan Rashid & Shakil Romshoo & Rajiv Chaturvedi & N. Ravindranath & Raman Sukumar & Mathangi Jayaraman & Thatiparthi Lakshmi & Jagmohan Sharma, 2015. "Projected climate change impacts on vegetation distribution over Kashmir Himalayas," Climatic Change, Springer, vol. 132(4), pages 601-613, October.
    2. Fengyi Guo & Jonathan Lenoir & Timothy C. Bonebrake, 2018. "Land-use change interacts with climate to determine elevational species redistribution," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    4. N. W. Arnell & J. A. Lowe & A. J. Challinor & T. J. Osborn, 2019. "Global and regional impacts of climate change at different levels of global temperature increase," Climatic Change, Springer, vol. 155(3), pages 377-391, August.
    5. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    6. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajid Khan & Kailash S. Gaira & Mohd Asgher & Susheel Verma & Shreekar Pant & Dinesh K. Agrawala & Saud Alamri & Manzer H. Siddiqui & Mahipal Singh Kesawat, 2023. "Temperature Induced Flowering Phenology of Olea ferruginea Royle: A Climate Change Effect," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    2. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    3. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    4. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    5. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    6. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    7. Guillaume Bal & Etienne Rivot & Jean-Luc Baglinière & Jonathan White & Etienne Prévost, 2014. "A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-24, December.
    8. Fuentes, M.M.P.B. & Porter, W.P., 2013. "Using a microclimate model to evaluate impacts of climate change on sea turtles," Ecological Modelling, Elsevier, vol. 251(C), pages 150-157.
    9. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    10. Dan Song & Tangbin Huo & Zhao Zhang & Lei Cheng & Le Wang & Kun Ming & Hui Liu & Mengsha Li & Xue Du, 2022. "Metagenomic Analysis Reveals the Response of Microbial Communities and Their Functions in Lake Sediment to Environmental Factors," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    11. Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
    12. Lazarus Chapungu & Luxon Nhamo & Roberto Cazzolla Gatti & Munyaradzi Chitakira, 2020. "Quantifying Changes in Plant Species Diversity in a Savanna Ecosystem Through Observed and Remotely Sensed Data," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    13. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    14. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    15. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
    16. Huicong An & Xiaorong Zhang & Jiaqi Ye, 2024. "Analysis of Vegetation Environmental Stress and the Lag Effect in Countries along the “Six Economic Corridors”," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    17. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    18. Iwona Gottfried & Tomasz Gottfried & Grzegorz Lesiński & Grzegorz Hebda & Maurycy Ignaczak & Grzegorz Wojtaszyn & Mirosław Jurczyszyn & Maciej Fuszara & Elżbieta Fuszara & Witold Grzywiński & Grzegorz, 2020. "Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change – Are current monitoring schemes still reliable for cryophilic bat species?," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    19. Kathleen A. Alexander & Marcos Carzolio & Douglas Goodin & Eric Vance, 2013. "Climate Change is Likely to Worsen the Public Health Threat of Diarrheal Disease in Botswana," IJERPH, MDPI, vol. 10(4), pages 1-29, March.
    20. Stergios Pirintsos & Luca Paoli & Stefano Loppi & Kiriakos Kotzabasis, 2011. "Photosynthetic performance of lichen transplants as early indicator of climatic stress along an altitudinal gradient in the arid Mediterranean area," Climatic Change, Springer, vol. 107(3), pages 305-328, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03476-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.