IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v8y2018i8d10.1038_s41558-018-0230-x.html
   My bibliography  Save this article

Risk of increased food insecurity under stringent global climate change mitigation policy

Author

Listed:
  • Tomoko Hasegawa

    (Center for Social and Environmental Systems Research, National Institute for Environmental Studies (NIES)
    International Institute for Applied System Analysis (IIASA))

  • Shinichiro Fujimori

    (Center for Social and Environmental Systems Research, National Institute for Environmental Studies (NIES)
    International Institute for Applied System Analysis (IIASA)
    Kyoto University)

  • Petr Havlík

    (International Institute for Applied System Analysis (IIASA))

  • Hugo Valin

    (International Institute for Applied System Analysis (IIASA))

  • Benjamin Leon Bodirsky

    (Potsdam Institute for Climate Impact Research (PIK))

  • Jonathan C. Doelman

    (PBL Netherlands Environmental Assessment Agency)

  • Thomas Fellmann

    (European Commission, Joint Research Centre)

  • Page Kyle

    (Pacific Northwest National Laboratory)

  • Jason F. L. Koopman

    (Wageningen University and Research)

  • Hermann Lotze-Campen

    (Potsdam Institute for Climate Impact Research (PIK)
    Humboldt-Universität zu Berlin)

  • Daniel Mason-D’Croz

    (International Food Policy Research Institute (IFPRI)
    Commonwealth Scientific and Industrial Research Organisation (CSIRO))

  • Yuki Ochi

    (E-Konzal Co. Ltd)

  • Ignacio Pérez Domínguez

    (European Commission, Joint Research Centre)

  • Elke Stehfest

    (PBL Netherlands Environmental Assessment Agency)

  • Timothy B. Sulser

    (International Food Policy Research Institute (IFPRI))

  • Andrzej Tabeau

    (Wageningen University and Research)

  • Kiyoshi Takahashi

    (Center for Social and Environmental Systems Research, National Institute for Environmental Studies (NIES))

  • Jun’ya Takakura

    (Center for Social and Environmental Systems Research, National Institute for Environmental Studies (NIES))

  • Hans Meijl

    (Wageningen University and Research)

  • Willem-Jan Zeist

    (PBL Netherlands Environmental Assessment Agency)

  • Keith Wiebe

    (International Food Policy Research Institute (IFPRI))

  • Peter Witzke

    (University of Bonn)

Abstract

Food insecurity can be directly exacerbated by climate change due to crop-production-related impacts of warmer and drier conditions that are expected in important agricultural regions1–3. However, efforts to mitigate climate change through comprehensive, economy-wide GHG emissions reductions may also negatively affect food security, due to indirect impacts on prices and supplies of key agricultural commodities4–6. Here we conduct a multiple model assessment on the combined effects of climate change and climate mitigation efforts on agricultural commodity prices, dietary energy availability and the population at risk of hunger. A robust finding is that by 2050, stringent climate mitigation policy, if implemented evenly across all sectors and regions, would have a greater negative impact on global hunger and food consumption than the direct impacts of climate change. The negative impacts would be most prevalent in vulnerable, low-income regions such as sub-Saharan Africa and South Asia, where food security problems are already acute.

Suggested Citation

  • Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
  • Handle: RePEc:nat:natcli:v:8:y:2018:i:8:d:10.1038_s41558-018-0230-x
    DOI: 10.1038/s41558-018-0230-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-018-0230-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-018-0230-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hermann Lotze-Campen & Martin Lampe & Page Kyle & Shinichiro Fujimori & Petr Havlik & Hans Meijl & Tomoko Hasegawa & Alexander Popp & Christoph Schmitz & Andrzej Tabeau & Hugo Valin & Dirk Willenbocke, 2014. "Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 103-116, January.
    2. Christoph Müller & Richard D. Robertson, 2014. "Projecting future crop productivity for global economic modeling," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 37-50, January.
    3. Uris Lantz C. Baldos & Thomas W. Hertel, 2014. "Global food security in 2050: the role of agricultural productivity and climate change," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), pages 554-570, October.
    4. Toshihiko Masui & Kenichi Matsumoto & Yasuaki Hijioka & Tsuguki Kinoshita & Toru Nozawa & Sawako Ishiwatari & Etsushi Kato & P. Shukla & Yoshiki Yamagata & Mikiko Kainuma, 2011. "An emission pathway for stabilization at 6 Wm −2 radiative forcing," Climatic Change, Springer, vol. 109(1), pages 59-76, November.
    5. Sherman Robinson & Hans Meijl & Dirk Willenbockel & Hugo Valin & Shinichiro Fujimori & Toshihiko Masui & Ron Sands & Marshall Wise & Katherine Calvin & Petr Havlik & Daniel Mason d'Croz & Andrzej Tabe, 2014. "Comparing supply-side specifications in models of global agriculture and the food system," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 21-35, January.
    6. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 35(2), pages 117-141, June.
    7. Thomas W. Hertel & Stephanie D. Rosch, 2010. "Climate Change, Agriculture, and Poverty," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 32(3), pages 355-385.
    8. Mosnier, A. & Havlík, P. & Valin, H. & Baker, J. & Murray, B. & Feng, S. & Obersteiner, M. & McCarl, B.A. & Rose, S.K. & Schneider, U.A., 2013. "Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth," Energy Policy, Elsevier, vol. 57(C), pages 602-614.
    9. Marco Springmann & Daniel Mason-D’Croz & Sherman Robinson & Keith Wiebe & H. Charles J. Godfray & Mike Rayner & Peter Scarborough, 2017. "Mitigation potential and global health impacts from emissions pricing of food commodities," Nature Climate Change, Nature, vol. 7(1), pages 69-74, January.
    10. A. Reisinger & P. Havlik & K. Riahi & O. Vliet & M. Obersteiner & M. Herrero, 2013. "Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture," Climatic Change, Springer, vol. 117(4), pages 677-690, April.
    11. S. Asseng & F. Ewert & P. Martre & R. P. Rötter & D. B. Lobell & D. Cammarano & B. A. Kimball & M. J. Ottman & G. W. Wall & J. W. White & M. P. Reynolds & P. D. Alderman & P. V. V. Prasad & P. K. Agga, 2015. "Rising temperatures reduce global wheat production," Nature Climate Change, Nature, vol. 5(2), pages 143-147, February.
    12. Alexander Popp & Steven Rose & Katherine Calvin & Detlef Vuuren & Jan Dietrich & Marshall Wise & Elke Stehfest & Florian Humpenöder & Page Kyle & Jasper Vliet & Nico Bauer & Hermann Lotze-Campen & Dav, 2014. "Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options," Climatic Change, Springer, vol. 123(3), pages 495-509, April.
    13. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hermann Lotze-Campen & Martin Lampe & Page Kyle & Shinichiro Fujimori & Petr Havlik & Hans Meijl & Tomoko Hasegawa & Alexander Popp & Christoph Schmitz & Andrzej Tabeau & Hugo Valin & Dirk Willenbocke, 2014. "Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 103-116, January.
    2. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    3. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    4. Zimmermann, Andrea & Webber, Heidi & Zhao, Gang & Ewert, Frank & Kros, Johannes & Wolf, Joost & Britz, Wolfgang & de Vries, Wim, 2017. "Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements," Agricultural Systems, Elsevier, vol. 157(C), pages 81-92.
    5. Sudarshan Chalise & Athula Naranpanawa, 2023. "Potential impacts of climate change and adaptation in agriculture on poverty: the case of Nepal," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 28(4), pages 1540-1559, October.
    6. Bartelings, Heleen & Kavallari, Aikaterini & van Meijl, Hans & Von Lampe, Martin, 2016. "Estimating the impact of fertilizer support policies: A CGE approach," Conference papers 332684, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Dirk Willenbockel & Claudia Ringler & Nikos Perez & Mark Rosegrant & Tingiu Zhu & Nathanial Matthews, 2016. "Climate Policy and the Energy-Water-Food Nexus: A Model Linkage Approach," EcoMod2016 9746, EcoMod.
    8. Bartelings, Heleen & Verma, Monika & Boysen-Urban, Kirsten & Verma, Monika, 2021. "Waste management and circular economy in a CGE framework," Conference papers 333314, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Food and Agricultural Organization [FAO], 2016. "Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade," Working Papers id:8512, eSocialSciences.
    10. John T. Saunders & Marcel Adenäuer & Jonathan Brooks, 2019. "Analysis of long-term challenges for agricultural markets," OECD Food, Agriculture and Fisheries Papers 131, OECD Publishing.
    11. Heinz-Peter Witzke & Pavel Ciaian & Jacques Delince, 2014. "CAPRI long-term climate change scenario analysis: The AgMIP approach," JRC Research Reports JRC85872, Joint Research Centre.
    12. Martin von Lampe & Aikaterini Kavallari & Heleen Bartelings & Hans van Meijl & Martin Banse & Joanna Ilicic-Komorowska & Franziska Junker & Frank van Tongeren, 2014. "Fertiliser and Biofuel Policies in the Global Agricultural Supply Chain: Implications for Agricultural Markets and Farm Incomes," OECD Food, Agriculture and Fisheries Papers 69, OECD Publishing.
    13. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    14. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    15. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    16. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    17. Bartelings, Heleen, 2019. "Waste management and circular economy: Building a CGE framework," Conference papers 333086, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. H. Charles J. Godfray & Sherman Robinson, 2015. "Contrasting approaches to projecting long-run global food security," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 31(1), pages 26-44.
    19. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    20. Tomoko Hasegawa & Ronald D. Sands & Thierry Brunelle & Yiyun Cui & Stefan Frank & Shinichiro Fujimori & Alexander Popp, 2020. "Food security under high bioenergy demand toward long-term climate goals," Climatic Change, Springer, vol. 163(3), pages 1587-1601, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:8:y:2018:i:8:d:10.1038_s41558-018-0230-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.