IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v123y2014i3p691-704.html
   My bibliography  Save this article

Trade-offs of different land and bioenergy policies on the path to achieving climate targets

Author

Listed:
  • Katherine Calvin
  • Marshall Wise
  • Page Kyle
  • Pralit Patel
  • Leon Clarke
  • Jae Edmonds

Abstract

Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, emissions and mitigation costs of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrument, but with five alternative bioenergy and land-use policy architectures. These scenarios are illustrative in nature, and designed to explore trade-offs. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy penalties and constraints, on the other hand, have little effect on food prices, but result in less bioenergy and thus can increase mitigation costs and energy prices. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Katherine Calvin & Marshall Wise & Page Kyle & Pralit Patel & Leon Clarke & Jae Edmonds, 2014. "Trade-offs of different land and bioenergy policies on the path to achieving climate targets," Climatic Change, Springer, vol. 123(3), pages 691-704, April.
  • Handle: RePEc:spr:climat:v:123:y:2014:i:3:p:691-704
    DOI: 10.1007/s10584-013-0897-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0897-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0897-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gurgel Angelo & Reilly John M & Paltsev Sergey, 2007. "Potential Land Use Implications of a Global Biofuels Industry," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-36, December.
    2. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    3. Popp, Alexander & Krause, Michael & Dietrich, Jan Philipp & Lotze-Campen, Hermann & Leimbach, Marian & Beringer, Tim & Bauer, Nico, 2012. "Additional CO2 emissions from land use change — Forest conservation as a precondition for sustainable production of second generation bioenergy," Ecological Economics, Elsevier, vol. 74(C), pages 64-70.
    4. Kenneth Gillingham & Steven Smith & Ronald Sands, 2008. "Impact of bioenergy crops in a carbon dioxide constrained world: an application of the MiniCAM energy-agriculture and land use model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(7), pages 675-701, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calvin, Katherine & Wise, Marshall & Clarke, Leon & Edmonds, James & Jones, Andrew & Thomson, Allison, 2014. "Near-term limits to mitigation: Challenges arising from contrary mitigation effects from indirect land-use change and sulfur emissions," Energy Economics, Elsevier, vol. 42(C), pages 233-239.
    2. Hugo Valin & Betina Dimaranan & Antoine Bouet, 2009. "Biofuels in the world markets: A Computable General Equilibrium assessment of environmental costs related to land use changes," Working Papers hal-03550775, HAL.
    3. Catherine Hausman, 2012. "Biofuels and Land Use Change: Sugarcane and Soybean Acreage Response in Brazil," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(2), pages 163-187, February.
    4. Wise, Marshall & Hodson, Elke L. & Mignone, Bryan K. & Clarke, Leon & Waldhoff, Stephanie & Luckow, Patrick, 2015. "An approach to computing marginal land use change carbon intensities for bioenergy in policy applications," Energy Economics, Elsevier, vol. 50(C), pages 337-347.
    5. Gohin, Alexandre, 2016. "Understanding the revised CARB estimates of the land use changes and greenhouse gas emissions induced by biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 402-412.
    6. Winchester, Niven & Reilly, John M., 2015. "The feasibility, costs, and environmental implications of large-scale biomass energy," Energy Economics, Elsevier, vol. 51(C), pages 188-203.
    7. Bouët, Antoine & Dimaranan, Betina V. & Valin, Hugo, 2010. "Modeling the global trade and environmental impacts of biofuel policies," IFPRI discussion papers 1018, International Food Policy Research Institute (IFPRI).
    8. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    9. Ben Fradj, Nosra & Aghajanzadeh-Darzi, Parisa & Jayet, Pierre-Alain, 2012. "Perennial crops in European farming systems and land use change: a model assessment," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126781, International Association of Agricultural Economists.
    10. U. Martin Persson, 2015. "The impact of biofuel demand on agricultural commodity prices: a systematic review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 410-428, September.
    11. Tabeau, Andrzej & van Meijl, Hans & Overmars, Koen P. & Stehfest, Elke, 2017. "REDD policy impacts on the agri-food sector and food security," Food Policy, Elsevier, vol. 66(C), pages 73-87.
    12. Winchester, Niven & Ledvina, Kirby, 2017. "The impact of oil prices on bioenergy, emissions and land use," Energy Economics, Elsevier, vol. 65(C), pages 219-227.
    13. Alexander Popp & Steven Rose & Katherine Calvin & Detlef Vuuren & Jan Dietrich & Marshall Wise & Elke Stehfest & Florian Humpenöder & Page Kyle & Jasper Vliet & Nico Bauer & Hermann Lotze-Campen & Dav, 2014. "Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options," Climatic Change, Springer, vol. 123(3), pages 495-509, April.
    14. Lima, José E. Durán & Ludeña, Carlos & Alvarez, Mariano & de Miguel, Carlos J., 2009. "Central American - European Union Association Agreement: Assessment using General and Partial Equilibrium," Conference papers 331857, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    16. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    17. Marshall A. Wise, Haewon C. McJeon, Katherine V. Calvin, Leon E. Clarke, and Page Kyle, 2014. "Assessing the Interactions among U.S. Climate Policy, Biomass Energy, and Agricultural Trade," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    18. Paudel, Krishna P. & Timilsina, Govinda R., 2010. "Would There Be Surplus Grains for Biofuels? An Assessment of Agro-economic Factors and Biofuel Production Potential at the Global Level," Staff Papers 113125, Louisiana State University, Department of Agricultural Economics and Agribusiness.
    19. Sajedinia, Ehsanreza & Tyner, Wally, 2017. "Use of General Equilibrium Models in Evaluating Biofuels Policies," Conference papers 332885, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:123:y:2014:i:3:p:691-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.