IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v15y2017i2d10.1007_s10288-016-0328-9.html
   My bibliography  Save this article

On-off scheduling schemes for power-constrained electric vehicle charging

Author

Listed:
  • Xavier Fernandes

    (University of Coimbra)

  • Joana Rebelo

    (University of Coimbra)

  • João Gouveia

    (University of Coimbra)

  • Rodrigo Maia

    (University of Coimbra
    University of Coimbra
    Critical Software)

  • Nuno Bustorff Silva

    (Critical Software)

Abstract

In this paper, we study the problem of establishing a dynamic charging schedule of electric vehicles (EVs) at a charging station, assuming that limited power implies that only a limited number of EVs can charge simultaneously. The only control we assume to be available to the charging station is the ability to (at any given time) turn on or off the power supply to any EV, with this tool we want to develop a charging schedule that will satisfy the energy demands of the EVs in their intended deadlines. We propose two distinct approaches to this problem: a discretized time version, based on a greedy-like algorithm, and a continuous time version, based on linear programming. We compare these two approaches and numerically study the improvement they yield in the efficiency of the charging procedure, when applied to simulated data based on real parking data. Finally, we illustrate the flexibility of the models by sketching several possible extensions.

Suggested Citation

  • Xavier Fernandes & Joana Rebelo & João Gouveia & Rodrigo Maia & Nuno Bustorff Silva, 2017. "On-off scheduling schemes for power-constrained electric vehicle charging," 4OR, Springer, vol. 15(2), pages 163-181, June.
  • Handle: RePEc:spr:aqjoor:v:15:y:2017:i:2:d:10.1007_s10288-016-0328-9
    DOI: 10.1007/s10288-016-0328-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-016-0328-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-016-0328-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monica Alonso & Hortensia Amaris & Jean Gardy Germain & Juan Manuel Galan, 2014. "Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms," Energies, MDPI, vol. 7(4), pages 1-27, April.
    2. Hadley, Stanton W. & Tsvetkova, Alexandra A., 2009. "Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation," The Electricity Journal, Elsevier, vol. 22(10), pages 56-68, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weige Zhang & Di Zhang & Biqiang Mu & Le Yi Wang & Yan Bao & Jiuchun Jiang & Hugo Morais, 2017. "Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids," Energies, MDPI, vol. 10(2), pages 1-19, January.
    2. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    3. Chitchai Srithapon & Prasanta Ghosh & Apirat Siritaratiwat & Rongrit Chatthaworn, 2020. "Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    4. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    5. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    6. Tian Mao & Xin Zhang & Baorong Zhou, 2019. "Intelligent Energy Management Algorithms for EV-charging Scheduling with Consideration of Multiple EV Charging Modes," Energies, MDPI, vol. 12(2), pages 1-17, January.
    7. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    8. Xiaohua Zhang & Jun Xie & Zhengwei Zhu & Jianfeng Zheng & Hao Qiang & Hailong Rong, 2016. "Smart Grid Cost-Emission Unit Commitment via Co-Evolutionary Agents," Energies, MDPI, vol. 9(10), pages 1-13, October.
    9. Talaei, A. & Begg, K. & Jamasb, T., 2012. "The Large Scale Roll-Out of Electric Vehicles: The Effect on the Electricity Sector and CO2 Emissions," Cambridge Working Papers in Economics 1246, Faculty of Economics, University of Cambridge.
    10. Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
    11. Irfan, Muhammad & Iqbal, Jamshed & Iqbal, Adeel & Iqbal, Zahid & Riaz, Raja Ali & Mehmood, Adeel, 2017. "Opportunities and challenges in control of smart grids – Pakistani perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 652-674.
    12. Xiao, Jingjie, 2013. "Grid integration and smart grid implementation of emerging technologies in electric power systems through approximate dynamic programming," MPRA Paper 58696, University Library of Munich, Germany.
    13. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    14. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Yang, Shengjie & Yao, Jiangang & Kang, Tong & Zhu, Xiangqian, 2014. "Dynamic operation model of the battery swapping station for EV (electric vehicle) in electricity market," Energy, Elsevier, vol. 65(C), pages 544-549.
    16. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    17. Azhar Ul-Haq & Marium Azhar & Yousef Mahmoud & Aqib Perwaiz & Essam A. Al-Ammar, 2017. "Probabilistic Modeling of Electric Vehicle Charging Pattern Associated with Residential Load for Voltage Unbalance Assessment," Energies, MDPI, vol. 10(9), pages 1-18, September.
    18. S Satheesh Kumar & B Ashok Kumar & S Senthilrani, 2024. "Review of electric vehicle (EV) charging using renewable solar photovoltaic (PV) nano grid," Energy & Environment, , vol. 35(2), pages 1089-1117, March.
    19. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    20. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:15:y:2017:i:2:d:10.1007_s10288-016-0328-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.