IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v10y2023i2d10.1007_s40745-020-00313-w.html
   My bibliography  Save this article

Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data

Author

Listed:
  • Varun Agiwal

    (Jawaharlal Nehru Medical College)

Abstract

In this article, we develop Bayesian estimation procedure for estimating the stress strength reliability R = P [X > Y ] when X (strength) and Y (stress) are the inverse Chen random variables. First, we study some statistical properties of the inverse Chen distribution such as quantiles, mode, stochastic ordering, entropy measure, order statistics and stress strength reliability. Then, we estimate the stress strength parameters and R using maximum likelihood and Bayesian estimations. A symmetric (squared error loss) and an asymmetric (entropy loss) loss functions are considered for Bayesian estimation under the assumption of gamma prior. Since, joint posterior distribution of the model parameters and R involve multiple integrations and have complex form. So, we do not get analytical solution without using any numerical techniques. Therefore, we propose to use Lindley’s approximation and Markov chain Monte Carlo techniques for Bayesian computation. A simulation study is carried out for the proposed Bayes estimators of unknown parameters and compared with the maximum likelihood estimator on the basis of mean squared error. Finally, an empirical illustration based on failure time data is presented to demonstrate the applicability of inverse Chen stress strength model.

Suggested Citation

  • Varun Agiwal, 2023. "Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data," Annals of Data Science, Springer, vol. 10(2), pages 317-347, April.
  • Handle: RePEc:spr:aodasc:v:10:y:2023:i:2:d:10.1007_s40745-020-00313-w
    DOI: 10.1007/s40745-020-00313-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-020-00313-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-020-00313-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manoj Kumar & Anurag Pathak & Sukriti Soni, 2019. "Bayesian Inference for Rayleigh Distribution Under Step-Stress Partially Accelerated Test with Progressive Type-II Censoring with Binomial Removal," Annals of Data Science, Springer, vol. 6(1), pages 117-152, March.
    2. M. S. Eliwa & M. El-Morshedy, 2019. "Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application," Annals of Data Science, Springer, vol. 6(1), pages 39-60, March.
    3. Farhad Yousaf & Sajid Ali & Ismail Shah, 2019. "Statistical Inference for the Chen Distribution Based on Upper Record Values," Annals of Data Science, Springer, vol. 6(4), pages 831-851, December.
    4. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    5. Chen, Zhenmin, 2000. "A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 155-161, August.
    6. Vikas Kumar Sharma, 2018. "Bayesian analysis of head and neck cancer data using generalized inverse Lindley stress–strength reliability model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(5), pages 1155-1180, March.
    7. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjay Kumar & Priyanka Chhaparwal, 2024. "Utilization of Priori Information in the Estimation of Population Mean for Time-Based Surveys," Annals of Data Science, Springer, vol. 11(5), pages 1675-1685, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiba Z. Muhammed & Ehab M. Almetwally, 2023. "Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring," Annals of Data Science, Springer, vol. 10(2), pages 481-512, April.
    2. Paula Ianishi & Oilson Alberto Gonzatto Junior & Marcos Jardel Henriques & Diego Carvalho do Nascimento & Gabriel Kamada Mattar & Pedro Luiz Ramos & Anderson Ara & Francisco Louzada, 2022. "Probability on Graphical Structure: A Knowledge-Based Agricultural Case," Annals of Data Science, Springer, vol. 9(2), pages 327-345, April.
    3. Devendra Kumar & M. Nassar & Sanku Dey, 2023. "Progressive Type-II Censored Data and Associated Inference with Application Based on Li–Li Rayleigh Distribution," Annals of Data Science, Springer, vol. 10(1), pages 43-71, February.
    4. Tabassum Naz Sindhu & Zawar Hussain, 2022. "Predictive Inference and Parameter Estimation from the Half-Normal Distribution for the Left Censored Data," Annals of Data Science, Springer, vol. 9(2), pages 285-299, April.
    5. Mohamed Ibrahim & M. Masoom Ali & Haitham M. Yousof, 2023. "The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods," Annals of Data Science, Springer, vol. 10(4), pages 1069-1106, August.
    6. Mohamed Ibrahim & Khaoula Aidi & M. Masoom Ali & Haitham M. Yousof, 2023. "A Novel Test Statistic for Right Censored Validity under a new Chen extension with Applications in Reliability and Medicine," Annals of Data Science, Springer, vol. 10(5), pages 1285-1299, October.
    7. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    8. Durgesh Samariya & Amit Thakkar, 2023. "A Comprehensive Survey of Anomaly Detection Algorithms," Annals of Data Science, Springer, vol. 10(3), pages 829-850, June.
    9. Aidin Zehtab-Salmasi & Ali-Reza Feizi-Derakhshi & Narjes Nikzad-Khasmakhi & Meysam Asgari-Chenaghlu & Saeideh Nabipour, 2023. "Multimodal Price Prediction," Annals of Data Science, Springer, vol. 10(3), pages 619-635, June.
    10. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    11. Patrick Osatohanmwen & Eferhonore Efe-Eyefia & Francis O. Oyegue & Joseph E. Osemwenkhae & Sunday M. Ogbonmwan & Benson A. Afere, 2022. "The Exponentiated Gumbel–Weibull {Logistic} Distribution with Application to Nigeria’s COVID-19 Infections Data," Annals of Data Science, Springer, vol. 9(5), pages 909-943, October.
    12. Petar Radanliev & David Roure & Rob Walton & Max Kleek & Omar Santos & La’Treall Maddox, 2022. "What Country, University, or Research Institute, Performed the Best on Covid-19 During the First Wave of the Pandemic?," Annals of Data Science, Springer, vol. 9(5), pages 1049-1067, October.
    13. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    14. Anjan Mukherjee & Abhik Mukherjee, 2022. "Interval-Valued Intuitionistic Fuzzy Soft Rough Approximation Operators and Their Applications in Decision Making Problem," Annals of Data Science, Springer, vol. 9(3), pages 611-625, June.
    15. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    16. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    17. Guangrui Tang & Neng Fan, 2022. "A Survey of Solution Path Algorithms for Regression and Classification Models," Annals of Data Science, Springer, vol. 9(4), pages 749-789, August.
    18. Aliyu Ismail Ishaq & Alfred Adewole Abiodun, 2020. "The Maxwell–Weibull Distribution in Modeling Lifetime Datasets," Annals of Data Science, Springer, vol. 7(4), pages 639-662, December.
    19. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    20. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:2:d:10.1007_s40745-020-00313-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.