IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i4d10.1007_s40745-024-00565-w.html
   My bibliography  Save this article

Reaction Function for Financial Market Reacting to Events or Information

Author

Listed:
  • Bo Li

    (Wuhan City Polytechnic
    PKU-WUHAN Institute for Artificial Intelligence)

  • Guangle Du

    (University of Chinese Academy of Sciences)

Abstract

Observations indicate that the distributions of stock returns in financial markets usually do not conform to normal distributions, but rather exhibit characteristics of high peaks, fat tails and biases. In this work, we assume that the effects of events or information on prices obey normal distribution, while financial markets often overreact or underreact to events or information, resulting in non normal distributions of stock returns. Based on the above assumptions, we for the first time propose a reaction function for a financial market reacting to events or information, and a model based on it to describe the distribution of real stock returns. Our analysis of the returns of China Securities Index 300 (CSI 300), the Standard & Poor’s 500 Index (SPX or S &P 500) and the Nikkei 225 Index (N225) at different time scales shows that financial markets often underreact to events or information with minor impacts, overreact to events or information with relatively significant impacts, and react slightly stronger to positive events or information than to negative ones. In addition, differences in financial markets and time scales of returns can also affect the shapes of the reaction functions.

Suggested Citation

  • Bo Li & Guangle Du, 2024. "Reaction Function for Financial Market Reacting to Events or Information," Annals of Data Science, Springer, vol. 11(4), pages 1265-1290, August.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:4:d:10.1007_s40745-024-00565-w
    DOI: 10.1007/s40745-024-00565-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-024-00565-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-024-00565-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leila Sh. Krupenikova (Крупеникова Л.Ш.) & Vladimir I. Kurbatov (Курбатов В.И.), 2022. "Big Data: New Organizational Opportunities And Social Risks [Big Data: Новые Организационные Возможности И Социальные Риски]," State and Municipal Management Scholar Notes, Russian Presidential Academy of National Economy and Public Administration, vol. 2, pages 247-251.
    2. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    3. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    4. Shi, Huai-Long & Zhou, Wei-Xing, 2017. "Time series momentum and contrarian effects in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 309-318.
    5. Liu, Bin & Xia, XiangYang & Xiao, Wen, 2020. "Public information content and market information efficiency: A comparison between China and the U.S," China Economic Review, Elsevier, vol. 60(C).
    6. S. James Press, 1967. "A Compound Events Model for Security Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 317-317.
    7. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    8. Zhang, Chu, 2010. "A Reexamination of the Causes of Time-Varying Stock Return Volatilities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(3), pages 663-684, June.
    9. Duan Wang & Boris Podobnik & Davor Horvati'c & H. Eugene Stanley, 2011. "Quantifying and Modeling Long-Range Cross-Correlations in Multiple Time Series with Applications to World Stock Indices," Papers 1102.2240, arXiv.org.
    10. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    11. Fengzhong Wang & Shwu-Jane Shieh & Shlomo Havlin & H. Eugene Stanley, 2009. "Statistical analysis of the overnight and daytime return," Papers 0903.0993, arXiv.org.
    12. Kothari, S.P. & Lewellen, Jonathan & Warner, Jerold B., 2006. "Stock returns, aggregate earnings surprises, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 79(3), pages 537-568, March.
    13. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    14. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    15. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    17. Michael Phelan, 1997. "Probability and Statistics Applied to the Practice of Financial Risk Management: The Case of J.P. Morgan's RiskMetrics™," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 175-200, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    2. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    3. Stanley, H.E. & Gopikrishnan, P. & Plerou, V. & Amaral, L.A.N., 2000. "Quantifying fluctuations in economic systems by adapting methods of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 339-361.
    4. Wai Mun Fong, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, John Wiley & Sons, vol. 6(2), pages 167-186.
    5. Eom, Cheoljun & Kaizoji, Taisei & Scalas, Enrico, 2019. "Fat tails in financial return distributions revisited: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    6. Longin, Francois, 2005. "The choice of the distribution of asset returns: How extreme value theory can help?," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 1017-1035, April.
    7. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    8. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
    9. Y. Malevergne & V. F. Pisarenko & D. Sornette, 2003. "Empirical Distributions of Log-Returns: between the Stretched Exponential and the Power Law?," Papers physics/0305089, arXiv.org.
    10. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    11. Christian Gabriel & Christian Lau, 2014. "On the distribution of government bond returns: evidence from the EMU," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(2), pages 181-203, May.
    12. Kaehler, Jürgen, 1991. "Modelling and forecasting exchange-rate volatility with ARCH-type models," ZEW Discussion Papers 91-02, ZEW - Leibniz Centre for European Economic Research.
    13. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    14. J. Francisco Rubio & Neal Maroney & M. Kabir Hassan, 2018. "Can Efficiency of Returns Be Considered as a Pricing Factor?," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 25-54, June.
    15. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & Zhong, Chen-Yang & Qiu, Tian & Ren, Fei & He, Yun-Xing, 2018. "Self-reinforcing feedback loop in financial markets with coupling of market impact and momentum traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 301-310.
    16. Massing, Till & Ramos, Arturo, 2021. "Student’s t mixture models for stock indices. A comparative study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    17. Phoebe Koundouri & Nikolaos Kourogenis & Nikitas Pittis, "undated". "Statistical Modeling of Stock Returns: Explanatory or Descriptive? A Historical Survey with Some Methodological Reflections," DEOS Working Papers 1331, Athens University of Economics and Business.
    18. Richard Harris & C. Coskun Kucukozmen, 2001. "The empirical distribution of stock returns: evidence from an emerging European market," Applied Economics Letters, Taylor & Francis Journals, vol. 8(6), pages 367-371.
    19. Zoran Ivanovski & Zoran Narasanov & Nadica Ivanovska, 2015. "Volatility And Kurtosis At Emerging Markets: Comparative Analysis Of Macedonian Stock Exchange And Six Stock Markets From Central And Eastern Europe," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 9(1), pages 84-93.
    20. Kim, Kyungwon, 2013. "Modeling financial crisis period: A volatility perspective of Credit Default Swap market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4977-4988.

    More about this item

    Keywords

    Stock returns; Normal distribution; Overreaction; Investor behavior;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:4:d:10.1007_s40745-024-00565-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.