IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v4y2017i2d10.1007_s40745-017-0112-5.html
   My bibliography  Save this article

Internet of Things, Real-Time Decision Making, and Artificial Intelligence

Author

Listed:
  • James M. Tien

    (University of Miami)

Abstract

In several earlier papers, the author defined and detailed the concept of a servgood, which can be thought of as a physical good or product enveloped by a services-oriented layer that makes the good smarter or more adaptable and customizable for a particular use. Adding another layer of physical sensors could then enhance its smartness and intelligence, especially if it were to be connected with other servgoods—thus, constituting an Internet of Things (IoT) or servgoods. More importantly, real-time decision making is central to the Internet of Things; it is about decision informatics and embraces the advanced technologies of sensing (i.e., Big Data), processing (i.e., real-time analytics), reacting (i.e., real-time decision-making), and learning (i.e., deep learning). Indeed, real-time decision making (RTDM) is becoming an integral aspect of IoT and artificial intelligence (AI), including its improving abilities at voice and video recognition, speech and predictive synthesis, and language and social-media understanding. These three key and mutually supportive technologies—IoT, RTDM, and AI—are considered herein, including their progress to date.

Suggested Citation

  • James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
  • Handle: RePEc:spr:aodasc:v:4:y:2017:i:2:d:10.1007_s40745-017-0112-5
    DOI: 10.1007/s40745-017-0112-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-017-0112-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-017-0112-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:4:y:2017:i:2:d:10.1007_s40745-017-0112-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.