IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v10y2023i1d10.1057_s41599-023-02214-8.html
   My bibliography  Save this article

Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms

Author

Listed:
  • Roberto Moro-Visconti

    (Università Cattolica del Sacro Cuore)

  • Salvador Cruz Rambaud

    (Universidad de Almería)

  • Joaquín López Pascual

    (Universidad Rey Juan Carlos)

Abstract

The objective of this study is to determine the impact of artificial intelligence (AI) on the earnings before interest, taxes, depreciation, and amortization (EBITDA) of firms as a proxy of their financial and economic margins by improving revenues and minimizing expenses. This impact is positive on the market value and scalability by improving the economic and financial sustainability of companies. The methodology is based on a business plan that considers the savings obtained by a traditional firm implementing AI. Specifically, a sensitivity analysis will demonstrate that AI savings impact key parameters, leading to economic and financial sustainability. Additionally, a mathematical interpretation, based on network theory, will be produced to provide and compare the added value of two ecosystems (without and with AI that adds up new nodes and strengthens the existing ones). The main contribution of this paper is the combination of two unrelated approaches, showing the potential of AI in scalable ecosystems. In future research, this innovative methodology could be extended to other technological applications.

Suggested Citation

  • Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
  • Handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02214-8
    DOI: 10.1057/s41599-023-02214-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-023-02214-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-023-02214-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrzej Wodecki, 2019. "Artificial Intelligence in Value Creation," Springer Books, Springer, number 978-3-319-91596-8, April.
    2. Drissi Saadia, 2021. "Integration of Cloud Computing, Big Data, Artificial Intelligence, and Internet of Things: Review and Open Research Issues," International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), IGI Global, vol. 16(1), pages 10-17, January.
    3. Vlačić, Božidar & Corbo, Leonardo & Costa e Silva, Susana & Dabić, Marina, 2021. "The evolving role of artificial intelligence in marketing: A review and research agenda," Journal of Business Research, Elsevier, vol. 128(C), pages 187-203.
    4. Burström, Thommie & Parida, Vinit & Lahti, Tom & Wincent, Joakim, 2021. "AI-enabled business-model innovation and transformation in industrial ecosystems: A framework, model and outline for further research," Journal of Business Research, Elsevier, vol. 127(C), pages 85-95.
    5. Stanislav Škapa & Nina Bočková & Karel Doubravský & Mirko Dohnal, 2023. "Fuzzy confrontations of models of ESG investing versus non-ESG investing based on artificial intelligence algorithms," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 13(1), pages 763-775, January.
    6. Ida Merete Enholm & Emmanouil Papagiannidis & Patrick Mikalef & John Krogstie, 2022. "Artificial Intelligence and Business Value: a Literature Review," Information Systems Frontiers, Springer, vol. 24(5), pages 1709-1734, October.
    7. Sjödin, David & Parida, Vinit & Palmié, Maximilian & Wincent, Joakim, 2021. "How AI capabilities enable business model innovation: Scaling AI through co-evolutionary processes and feedback loops," Journal of Business Research, Elsevier, vol. 134(C), pages 574-587.
    8. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    9. Wei Fang & Yu Sha & Victor S. Sheng, 2022. "Survey on the Application of Artificial Intelligence in ENSO Forecasting," Mathematics, MDPI, vol. 10(20), pages 1-22, October.
    10. Shivam Gupta & Sachin Modgil & Samadrita Bhattacharyya & Indranil Bose, 2022. "Artificial intelligence for decision support systems in the field of operations research: review and future scope of research," Annals of Operations Research, Springer, vol. 308(1), pages 215-274, January.
    11. Sagarika Mishra & Michael T. Ewing & Holly B. Cooper, 2022. "Artificial intelligence focus and firm performance," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1176-1197, November.
    12. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    13. Rambaud, Salvador Cruz & Robinson, Derek J.S., 2014. "Systems of companies with assets in common: Determining true interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 125-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorzik, Philip & Klein, Sascha P. & Kanbach, Dominik K. & Kraus, Sascha, 2024. "AI-driven business model innovation: A systematic review and research agenda," Journal of Business Research, Elsevier, vol. 182(C).
    2. Ancillai, Chiara & Sabatini, Andrea & Gatti, Marco & Perna, Andrea, 2023. "Digital technology and business model innovation: A systematic literature review and future research agenda," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    3. Pramanik, Paritosh & Jana, Rabin K. & Ghosh, Indranil, 2024. "AI readiness enablers in developed and developing economies: Findings from the XGBoost regression and explainable AI framework," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    4. Shen, Lei & Sun, Wanqin & Parida, Vinit, 2023. "Consolidating digital servitization research: A systematic review, integrative framework, and future research directions," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    5. Wang, Zongrun & Zhang, Taiyu & Ren, Xiaohang & Shi, Yukun, 2024. "AI adoption rate and corporate green innovation efficiency: Evidence from Chinese energy companies," Energy Economics, Elsevier, vol. 132(C).
    6. Manis, K.T. & Madhavaram, Sreedhar, 2023. "AI-Enabled marketing capabilities and the hierarchy of capabilities: Conceptualization, proposition development, and research avenues," Journal of Business Research, Elsevier, vol. 157(C).
    7. Talaei-Khoei, Amir & Yang, Alan T. & Masialeti, Masialeti, 2024. "How does incorporating ChatGPT within a firm reinforce agility-mediated performance? The moderating role of innovation infusion and firms’ ethical identity," Technovation, Elsevier, vol. 132(C).
    8. Deng, Shichang & Zhang, Jingjing & Lin, Zhengnan & Li, Xiangqian, 2024. "Service staff makes me nervous: Exploring the impact of insecure attachment on AI service preference," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    9. Shen, Lei & Shi, Qingyue & Parida, Vinit & Jovanovic, Marin, 2024. "Ecosystem orchestration practices for industrial firms: A qualitative meta-analysis, framework development and research agenda," Journal of Business Research, Elsevier, vol. 173(C).
    10. Madanaguli, Arun & Sjödin, David & Parida, Vinit & Mikalef, Patrick, 2024. "Artificial intelligence capabilities for circular business models: Research synthesis and future agenda," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    11. Abou-Foul, Mohamad & Ruiz-Alba, Jose L. & López-Tenorio, Pablo J., 2023. "The impact of artificial intelligence capabilities on servitization: The moderating role of absorptive capacity-A dynamic capabilities perspective," Journal of Business Research, Elsevier, vol. 157(C).
    12. Bratanova, Alexandra & Pham, Hien & Mason, Claire & Hajkowicz, Stefan & Naughtin, Claire & Schleiger, Emma & Sanderson, Conrad & Chen, Caron & Karimi, Sarvnaz, 2022. "Differentiating artificial intelligence activity clusters in Australia," Technology in Society, Elsevier, vol. 71(C).
    13. Zhu, Minghao & Liang, Chen & Yeung, Andy C.L. & Zhou, Honggeng, 2024. "The impact of intelligent manufacturing on labor productivity: An empirical analysis of Chinese listed manufacturing companies," International Journal of Production Economics, Elsevier, vol. 267(C).
    14. Zhou, Shuya & Zhou, Peiyan & Ji, Hannah, 2022. "Can digital transformation alleviate corporate tax stickiness: The mediation effect of tax avoidance," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    15. O. C. Ferrell & Dana E. Harrison & Linda K. Ferrell & Haya Ajjan & Bryan W. Hochstein, 2024. "A theoretical framework to guide AI ethical decision making," AMS Review, Springer;Academy of Marketing Science, vol. 14(1), pages 53-67, June.
    16. Broekhuizen, Thijs & Dekker, Henri & de Faria, Pedro & Firk, Sebastian & Nguyen, Dinh Khoi & Sofka, Wolfgang, 2023. "AI for managing open innovation: Opportunities, challenges, and a research agenda," Journal of Business Research, Elsevier, vol. 167(C).
    17. Mariani, Marcello M. & Machado, Isa & Nambisan, Satish, 2023. "Types of innovation and artificial intelligence: A systematic quantitative literature review and research agenda," Journal of Business Research, Elsevier, vol. 155(PB).
    18. Bahoo, Salman & Cucculelli, Marco & Qamar, Dawood, 2023. "Artificial intelligence and corporate innovation: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    19. Tachia Chin & Muhammad Waleed Ayub Ghouri & Jiyang Jin & Muhammet Deveci, 2024. "AI technologies affording the orchestration of ecosystem-based business models: the moderating role of AI knowledge spillover," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    20. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02214-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.