IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v6y2019i1d10.1007_s40745-018-00190-4.html
   My bibliography  Save this article

Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application

Author

Listed:
  • M. S. Eliwa

    (Mansoura University)

  • M. El-Morshedy

    (Mansoura University)

Abstract

In this paper, a new class of bivariate distributions called the bivariate Gumbel-G family is proposed, whose marginal distributions are Gumbel-G families. Several of its statistical properties are derived. After introducing the general class, a special model of the new family is discussed in-detail. Bayesian and maximum likelihood techniques are used to estimate the model parameters. Simulation study is carried out to examine the bias and mean square error of Bayesian and maximum likelihood estimators. Finally, a real data set is analyzed for illustrative the flexibility of the proposed bivariate family.

Suggested Citation

  • M. S. Eliwa & M. El-Morshedy, 2019. "Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application," Annals of Data Science, Springer, vol. 6(1), pages 39-60, March.
  • Handle: RePEc:spr:aodasc:v:6:y:2019:i:1:d:10.1007_s40745-018-00190-4
    DOI: 10.1007/s40745-018-00190-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-018-00190-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-018-00190-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Gupta, Arjun K., 2013. "Bayes estimation for the Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 271-281.
    2. Gauss Cordeiro & Saralees Nadarajah & Edwin Ortega, 2012. "The Kumaraswamy Gumbel distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 139-168, June.
    3. Kundu, Debasis & Gupta, Rameshwar D., 2009. "Bivariate generalized exponential distribution," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 581-593, April.
    4. Sarhan, Ammar M. & Balakrishnan, N., 2007. "A new class of bivariate distributions and its mixture," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1508-1527, August.
    5. Sarhan, Ammar M. & Hamilton, David C. & Smith, Bruce & Kundu, Debasis, 2011. "The bivariate generalized linear failure rate distribution and its multivariate extension," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 644-654, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiba Z. Muhammed & Ehab M. Almetwally, 2023. "Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring," Annals of Data Science, Springer, vol. 10(2), pages 481-512, April.
    2. Manuel Franco & Juana-María Vivo & Debasis Kundu, 2020. "A Generator of Bivariate Distributions: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(10), pages 1-30, October.
    3. M. S. Eliwa & Ziyad Ali Alhussain & M. El-Morshedy, 2020. "Discrete Gompertz-G Family of Distributions for Over- and Under-Dispersed Data with Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(3), pages 1-26, March.
    4. Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.
    5. M. El-Morshedy & Ziyad Ali Alhussain & Doaa Atta & Ehab M. Almetwally & M. S. Eliwa, 2020. "Bivariate Burr X Generator of Distributions: Properties and Estimation Methods with Applications to Complete and Type-II Censored Samples," Mathematics, MDPI, vol. 8(2), pages 1-31, February.
    6. Mohamed Ibrahim & M. Masoom Ali & Haitham M. Yousof, 2023. "The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods," Annals of Data Science, Springer, vol. 10(4), pages 1069-1106, August.
    7. Varun Agiwal, 2023. "Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data," Annals of Data Science, Springer, vol. 10(2), pages 317-347, April.
    8. Tabassum Naz Sindhu & Zawar Hussain, 2022. "Predictive Inference and Parameter Estimation from the Half-Normal Distribution for the Left Censored Data," Annals of Data Science, Springer, vol. 9(2), pages 285-299, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammed, Hiba Z., 2020. "On a bivariate generalized inverted Kumaraswamy distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    2. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    3. Kundu, Debasis & Gupta, Arjun K., 2014. "On bivariate Weibull-Geometric distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 19-29.
    4. Diksha Das & Tariq S. Alshammari & Khudhayr A. Rashedi & Bhanita Das & Partha Jyoti Hazarika & Mohamed S. Eliwa, 2024. "Discrete Joint Random Variables in Fréchet-Weibull Distribution: A Comprehensive Mathematical Framework with Simulations, Goodness-of-Fit Analysis, and Informed Decision-Making," Mathematics, MDPI, vol. 12(21), pages 1-28, October.
    5. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    6. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    7. Manuel Franco & Juana-María Vivo & Debasis Kundu, 2020. "A Generator of Bivariate Distributions: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(10), pages 1-30, October.
    8. S. Mirhosseini & M. Amini & D. Kundu & A. Dolati, 2015. "On a new absolutely continuous bivariate generalized exponential distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 61-83, March.
    9. Sarhan, Ammar M. & Hamilton, David C. & Smith, Bruce & Kundu, Debasis, 2011. "The bivariate generalized linear failure rate distribution and its multivariate extension," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 644-654, January.
    10. Muhammad Mohsin & Hannes Kazianka & Jürgen Pilz & Albrecht Gebhardt, 2014. "A new bivariate exponential distribution for modeling moderately negative dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 123-148, March.
    11. Rakesh Ranjan & Vastoshpati Shastri, 2019. "Posterior and predictive inferences for Marshall Olkin bivariate Weibull distribution via Markov chain Monte Carlo methods," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1535-1543, December.
    12. Fatih Kızılaslan & Mustafa Nadar, 2018. "Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution," Statistical Papers, Springer, vol. 59(1), pages 307-340, March.
    13. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    14. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    15. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    16. Vasili B.V. Nagarjuna & R. Vishnu Vardhan & Christophe Chesneau, 2021. "Kumaraswamy Generalized Power Lomax Distributionand Its Applications," Stats, MDPI, vol. 4(1), pages 1-18, January.
    17. Lee, Hyunju & Cha, Ji Hwan, 2014. "On construction of general classes of bivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 151-159.
    18. Lucas David Ribeiro-Reis, 2023. "The Log-Logistic Regression Model Under Censoring Scheme," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-12, June.
    19. Franco, Manuel & Vivo, Juana-María, 2010. "A multivariate extension of Sarhan and Balakrishnan's bivariate distribution and its ageing and dependence properties," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 491-499, March.
    20. Jing Cai & Yimin Shi & Bin Liu, 2017. "Statistical analysis for masked system life data from Marshall‐Olkin Weibull distribution under progressive hybrid censoring," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(6), pages 490-501, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:6:y:2019:i:1:d:10.1007_s40745-018-00190-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.