IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v6y2019i1d10.1007_s40745-019-00192-w.html
   My bibliography  Save this article

Bayesian Inference for Rayleigh Distribution Under Step-Stress Partially Accelerated Test with Progressive Type-II Censoring with Binomial Removal

Author

Listed:
  • Manoj Kumar

    (Central University of Haryana)

  • Anurag Pathak

    (Central University of Haryana)

  • Sukriti Soni

    (Central University of Rajasthan)

Abstract

In this paper, we propose maximum likelihood estimators (MLEs) and Bayes estimators of parameters of the step-stress partially accelerated life testing of Rayleigh distribution in presence of progressive type-II censoring with binomial removal scheme under Square error loss function, General entropy loss function and Linear exponential loss function . The MLEs and corresponding Bayes estimators are compared in terms of their risks based on simulated samples from Rayleigh distribution. Also, we present to analyze two sets of real data to show its applicability.

Suggested Citation

  • Manoj Kumar & Anurag Pathak & Sukriti Soni, 2019. "Bayesian Inference for Rayleigh Distribution Under Step-Stress Partially Accelerated Test with Progressive Type-II Censoring with Binomial Removal," Annals of Data Science, Springer, vol. 6(1), pages 117-152, March.
  • Handle: RePEc:spr:aodasc:v:6:y:2019:i:1:d:10.1007_s40745-019-00192-w
    DOI: 10.1007/s40745-019-00192-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-019-00192-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-019-00192-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. Shuo-Jye Wu & Chun-Tao Chang, 2003. "Inference in the Pareto distribution based on progressive Type II censoring with random removals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(2), pages 163-172.
    3. Balakrishnan, N. & Cramer, E. & Kamps, U., 2001. "Bounds for means and variances of progressive type II censored order statistics," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 301-315, October.
    4. Morris H. Degroot & Prem K. Goel, 1979. "Bayesian estimation and optimal designs in partially accelerated life testing," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(2), pages 223-235, June.
    5. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    6. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paula Ianishi & Oilson Alberto Gonzatto Junior & Marcos Jardel Henriques & Diego Carvalho do Nascimento & Gabriel Kamada Mattar & Pedro Luiz Ramos & Anderson Ara & Francisco Louzada, 2022. "Probability on Graphical Structure: A Knowledge-Based Agricultural Case," Annals of Data Science, Springer, vol. 9(2), pages 327-345, April.
    2. Varun Agiwal, 2023. "Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data," Annals of Data Science, Springer, vol. 10(2), pages 317-347, April.
    3. Aliyu Ismail Ishaq & Alfred Adewole Abiodun, 2020. "The Maxwell–Weibull Distribution in Modeling Lifetime Datasets," Annals of Data Science, Springer, vol. 7(4), pages 639-662, December.
    4. Abhimanyu Singh Yadav & Subhradev Sen & Sudhansu S. Maiti & Mahendra Saha & Shivanshi Shukla, 2023. "Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme," Annals of Data Science, Springer, vol. 10(2), pages 455-479, April.
    5. Devendra Kumar & M. Nassar & Sanku Dey, 2023. "Progressive Type-II Censored Data and Associated Inference with Application Based on Li–Li Rayleigh Distribution," Annals of Data Science, Springer, vol. 10(1), pages 43-71, February.
    6. Harshita Kumawat & Kanak Modi & Pankaj Nagar, 2024. "Modi-Weibull Distribution: Inferential and Simulation Study," Annals of Data Science, Springer, vol. 11(6), pages 1975-1999, December.
    7. Anurag Pathak & Manoj Kumar & Sanjay Kumar Singh & Umesh Singh & Manoj Kumar Tiwari & Sandeep Kumar, 2022. "Bayesian inference for Maxwell Boltzmann distribution on step-stress partially accelerated life test under progressive type-II censoring with binomial removals," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1976-2010, August.
    8. Tabassum Naz Sindhu & Zawar Hussain, 2022. "Predictive Inference and Parameter Estimation from the Half-Normal Distribution for the Left Censored Data," Annals of Data Science, Springer, vol. 9(2), pages 285-299, April.
    9. Mohamed A. W. Mahmoud & Mohamed G. M. Ghazal & Hossam M. M. Radwan, 2023. "Bayesian Estimation and Optimal Censoring of Inverted Generalized Linear Exponential Distribution Using Progressive First Failure Censoring," Annals of Data Science, Springer, vol. 10(2), pages 527-554, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hurairah Ahmed & Alabid Abdelhakim, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 13-34, June.
    2. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    3. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    4. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Statistics Poland, vol. 19(4), pages 597-620, December.
    5. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    6. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    7. Mehdi Jabbari Nooghabi, 2021. "Comparing estimation of the parameters of distribution of the root density of plants in the presence of outliers," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    8. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    9. Ahlam H. Tolba & Chrisogonus K. Onyekwere & Ahmed R. El-Saeed & Najwan Alsadat & Hanan Alohali & Okechukwu J. Obulezi, 2023. "A New Distribution for Modeling Data with Increasing Hazard Rate: A Case of COVID-19 Pandemic and Vinyl Chloride Data," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    10. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    11. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    12. Patawa, Rohit & Pundir, Pramendra Singh, 2023. "Inferential study of single unit repairable system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 503-516.
    13. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    14. Singh, Bhupendra & Gupta, Puneet Kumar, 2012. "Load-sharing system model and its application to the real data set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1615-1629.
    15. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    16. A. Asgharzadeh & A. Fallah & M. Z. Raqab & R. Valiollahi, 2018. "Statistical inference based on Lindley record data," Statistical Papers, Springer, vol. 59(2), pages 759-779, June.
    17. Marius Giuclea & Costin-Ciprian Popescu, 2022. "On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
    18. Manal M. Yousef & Amal S. Hassan & Abdullah H. Al-Nefaie & Ehab M. Almetwally & Hisham M. Almongy, 2022. "Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    19. M. R. Irshad & R. Maya, 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 597-620, December.
    20. Ramajeyam Tharshan & Pushpakanthie Wijekoon, 2020. "A comparison study on a new five-parameter generalized Lindley distribution with its sub-models," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 89-117, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:6:y:2019:i:1:d:10.1007_s40745-019-00192-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.