IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v10y2023i2d10.1007_s40745-020-00316-7.html
   My bibliography  Save this article

Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring

Author

Listed:
  • Hiba Z. Muhammed

    (Cairo University)

  • Ehab M. Almetwally

    (Delta University of Science and Technology)

Abstract

Recently, bivariate inverse Weibull distribution was derived; many of its properties have been discussed. Progressive Type-II censoring for bivariate inverse Weibull distribution has been proposed. The problem of estimating the unknown parameters of this distribution in the presence of progressive Type-II censoring by both Maximum likelihood and Bayesian estimation methods is considered in this paper. Moreover, asymptotic and bootstrap confidence intervals for the model parameters are obtained. Simulation study and a real data set are presented to illustrate the proposed procedure.

Suggested Citation

  • Hiba Z. Muhammed & Ehab M. Almetwally, 2023. "Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring," Annals of Data Science, Springer, vol. 10(2), pages 481-512, April.
  • Handle: RePEc:spr:aodasc:v:10:y:2023:i:2:d:10.1007_s40745-020-00316-7
    DOI: 10.1007/s40745-020-00316-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-020-00316-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-020-00316-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    2. M. S. Eliwa & M. El-Morshedy, 2019. "Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application," Annals of Data Science, Springer, vol. 6(1), pages 39-60, March.
    3. Farhad Yousaf & Sajid Ali & Ismail Shah, 2019. "Statistical Inference for the Chen Distribution Based on Upper Record Values," Annals of Data Science, Springer, vol. 6(4), pages 831-851, December.
    4. Kundu, Debasis & Gupta, Arjun K., 2013. "Bayes estimation for the Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 271-281.
    5. Ehab Mohamed Almetwally & Hiba Zeyada Muhammed & El-Sayed A. El-Sherpieny, 2020. "Bivariate Weibull Distribution: Properties and Different Methods of Estimation," Annals of Data Science, Springer, vol. 7(1), pages 163-193, March.
    6. El-Sherpieny, El-Sayed A. & Almetwally, Ehab M. & Muhammed, Hiba Z., 2020. "Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    7. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehab M. Almetwally & Aisha Fayomi & Maha E. Qura, 2024. "Advanced Copula-Based Models for Type II Censored Data: Applications in Industrial and Medical Settings," Mathematics, MDPI, vol. 12(12), pages 1-35, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    2. O. E. Abo-Kasem & Ehab M. Almetwally & Wael S. Abu El Azm, 2023. "Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation," Annals of Data Science, Springer, vol. 10(5), pages 1237-1284, October.
    3. Varun Agiwal, 2023. "Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data," Annals of Data Science, Springer, vol. 10(2), pages 317-347, April.
    4. Dina A. Ramadan & Ehab M. Almetwally & Ahlam H. Tolba, 2023. "Statistical Inference to the Parameter of the Akshaya Distribution under Competing Risks Data with Application HIV Infection to AIDS," Annals of Data Science, Springer, vol. 10(6), pages 1499-1525, December.
    5. Mohamed Ibrahim & M. Masoom Ali & Haitham M. Yousof, 2023. "The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods," Annals of Data Science, Springer, vol. 10(4), pages 1069-1106, August.
    6. El-Sayed A. El-Sherpieny & Ehab M. Almetwally & Hiba Z. Muhammed, 2023. "Bayesian and Non-Bayesian Estimation for the Parameter of Bivariate Generalized Rayleigh Distribution Based on Clayton Copula under Progressive Type-II Censoring with Random Removal," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1205-1242, August.
    7. R. Alshenawy & Ali Al-Alwan & Ehab M. Almetwally & Ahmed Z. Afify & Hisham M. Almongy, 2020. "Progressive Type-II Censoring Schemes of Extended Odd Weibull Exponential Distribution with Applications in Medicine and Engineering," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    8. Hiba Zeyada Muhammed, 2023. "A Class of Bivariate Modified Weighted Distributions: Properties and Applications," Annals of Data Science, Springer, vol. 10(4), pages 875-906, August.
    9. Mohamed Ibrahim & Khaoula Aidi & M. Masoom Ali & Haitham M. Yousof, 2023. "A Novel Test Statistic for Right Censored Validity under a new Chen extension with Applications in Reliability and Medicine," Annals of Data Science, Springer, vol. 10(5), pages 1285-1299, October.
    10. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    11. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    12. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    13. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    14. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    15. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    16. Muhammed Navas Thorakkattle & Shazia Farhin & Athar Ali khan, 2022. "Forecasting the Trends of Covid-19 and Causal Impact of Vaccines Using Bayesian Structural time Series and ARIMA," Annals of Data Science, Springer, vol. 9(5), pages 1025-1047, October.
    17. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    18. Vrushabh Gada & Madhura Shegaonkar & Madhura Inamdar & Sharath Dinesh & Darshan Sapariya & Vedant Konde & Mahesh Warang & Ninad Mehendale, 2022. "Data Analysis of COVID-19 Hospital Records Using Contextual Patient Classification System," Annals of Data Science, Springer, vol. 9(5), pages 945-965, October.
    19. Showkat Ahmad Lone & Intekhab Alam & Ahmadur Rahman, 2023. "Statistical Analysis Under Geometric Process in Accelerated Life Testing Plans for Generalized Exponential Distribution," Annals of Data Science, Springer, vol. 10(6), pages 1653-1665, December.
    20. Yanke Bao & Ying Wang, 2022. "Factor Space: The New Science of Causal Relationship," Annals of Data Science, Springer, vol. 9(3), pages 555-570, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:2:d:10.1007_s40745-020-00316-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.