IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.07575.html
   My bibliography  Save this paper

Application of Facebook's Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data

Author

Listed:
  • Emir Zunic
  • Kemal Korjenic
  • Kerim Hodzic
  • Dzenana Donko

Abstract

This paper presents a framework capable of accurately forecasting future sales in the retail industry and classifying the product portfolio according to the expected level of forecasting reliability. The proposed framework, that would be of great use for any company operating in the retail industry, is based on Facebook's Prophet algorithm and backtesting strategy. Real-world sales forecasting benchmark data obtained experimentally in a production environment in one of the biggest retail companies in Bosnia and Herzegovina is used to evaluate the framework and demonstrate its capabilities in a real-world use case scenario.

Suggested Citation

  • Emir Zunic & Kemal Korjenic & Kerim Hodzic & Dzenana Donko, 2020. "Application of Facebook's Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data," Papers 2005.07575, arXiv.org.
  • Handle: RePEc:arx:papers:2005.07575
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.07575
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serkan Aras & İpek Deveci Kocakoç & Cigdem Polat, 2017. "Comparative study on retail sales forecasting between single and combination methods," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(5), pages 803-832, September.
    2. Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
    3. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    4. Au, Kin-Fan & Choi, Tsan-Ming & Yu, Yong, 2008. "Fashion retail forecasting by evolutionary neural networks," International Journal of Production Economics, Elsevier, vol. 114(2), pages 615-630, August.
    5. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    6. Emir Žunić & Dženana Đonko & Emir Buza, 2020. "An Adaptive Data-Driven Approach to Solve Real-World Vehicle Routing Problems in Logistics," Complexity, Hindawi, vol. 2020, pages 1-24, January.
    7. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos P. Fourkiotis & Athanasios Tsadiras, 2024. "Applying Machine Learning and Statistical Forecasting Methods for Enhancing Pharmaceutical Sales Predictions," Forecasting, MDPI, vol. 6(1), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    2. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    3. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
    6. Hoeltgebaum, Henrique & Borenstein, Denis & Fernandes, Cristiano & Veiga, Álvaro, 2021. "A score-driven model of short-term demand forecasting for retail distribution centers," Journal of Retailing, Elsevier, vol. 97(4), pages 715-725.
    7. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    8. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
    9. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
    10. Sagaert, Yves R. & Kourentzes, Nikolaos & De Vuyst, Stijn & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "Incorporating macroeconomic leading indicators in tactical capacity planning," International Journal of Production Economics, Elsevier, vol. 209(C), pages 12-19.
    11. Tine Van Calster & Filip Van den Bossche & Bart Baesens & Wilfried Lemahieu, 2020. "Profit-oriented sales forecasting: a comparison of forecasting techniques from a business perspective," Papers 2002.00949, arXiv.org.
    12. Jorge-Eusebio Velasco-López & Ramón-Alberto Carrasco & Jesús Serrano-Guerrero & Francisco Chiclana, 2024. "Profiling Social Sentiment in Times of Health Emergencies with Information from Social Networks and Official Statistics," Mathematics, MDPI, vol. 12(6), pages 1-23, March.
    13. Uddin, Gazi Salah & Tang, Ou & Sahamkhadam, Maziar & Taghizadeh-Hesary, Farhad & Yahya, Muhammad & Cerin, Pontus & Rehme, Jakob, 2021. "Analysis of Forecasting Models in an Electricity Market under Volatility," ADBI Working Papers 1212, Asian Development Bank Institute.
    14. Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
    15. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    16. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    17. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    18. Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
    19. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    20. Fadi Kahwash & Basel Barakat & Ahmad Taha & Qammer H. Abbasi & Muhammad Ali Imran, 2021. "Optimising Electrical Power Supply Sustainability Using a Grid-Connected Hybrid Renewable Energy System—An NHS Hospital Case Study," Energies, MDPI, vol. 14(21), pages 1-23, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.07575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.