IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v20y2020i2d10.1007_s10660-020-09409-0.html
   My bibliography  Save this article

Study on convolutional neural network and its application in data mining and sales forecasting for E-commerce

Author

Listed:
  • Hong Pan

    (Liaoning University)

  • Hanxun Zhou

    (Liaoning University)

Abstract

In recent years, the rapid development of e-commerce has brought great convenience to people. Compared with traditional business environment, e-commerce is more dynamic and complex, which brings many challenges. Data mining technology can help people better deal with these challenges. Traditional data mining technology cannot effectively use the massive data in the electricity supplier, it relies on the time-consuming and labour-consuming characteristic engineering, and the obtained model is not scalable. Convolutional neural network can effectively use a large amount of data, and can automatically extract effective features from the original data, with higher availability. In this paper, convolutional neural network is used to mine e-commerce data to achieve the prediction of commodity sales. First, this article combines the inherent nature of the relevant merchandise information with the original cargo log data that can be converted into a specific “data frame” format. Raw log data includes items sold over a long period of time, price, quantity view, browse, search, search, times collected, number of items added to cart, and many other metrics. Then, convolutional neural network is applied to extract effective features on the data frame. Finally, the final layer of the convolutional neural network uses these features to predict sales of goods. This method can automatically extract effective features from the original structured time series data by convolutional neural network, and further use these features to achieve sales forecast. The validity of the proposed algorithm is verified on the real e-commerce data set.

Suggested Citation

  • Hong Pan & Hanxun Zhou, 2020. "Study on convolutional neural network and its application in data mining and sales forecasting for E-commerce," Electronic Commerce Research, Springer, vol. 20(2), pages 297-320, June.
  • Handle: RePEc:spr:elcore:v:20:y:2020:i:2:d:10.1007_s10660-020-09409-0
    DOI: 10.1007/s10660-020-09409-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-020-09409-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-020-09409-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaqiong Yao & HaiYing Wang, 2019. "Optimal subsampling for softmax regression," Statistical Papers, Springer, vol. 60(2), pages 585-599, April.
    2. E. Sivasankar & J. Vijaya, 2019. "A study of feature selection techniques for predicting customer retention in telecommunication sector," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 31(1), pages 1-26.
    3. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    4. Jitendra Kumar Rout & Kim-Kwang Raymond Choo & Amiya Kumar Dash & Sambit Bakshi & Sanjay Kumar Jena & Karen L. Williams, 2018. "A model for sentiment and emotion analysis of unstructured social media text," Electronic Commerce Research, Springer, vol. 18(1), pages 181-199, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    2. Saravanan Thirumuruganathan & Soon-gyo Jung & Dianne Ramirez Robillos & Joni Salminen & Bernard J. Jansen, 2021. "Forecasting the nearly unforecastable: why aren’t airline bookings adhering to the prediction algorithm?," Electronic Commerce Research, Springer, vol. 21(1), pages 73-100, March.
    3. Harald Konnerth, 2023. "The Potential Of Ai In B2b E-Commerce: A Structured Literature Review," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 17(1), pages 114-133.
    4. Kshitij Sharma & Yogesh K. Dwivedi & Bhimaraya Metri, 2024. "Incorporating causality in energy consumption forecasting using deep neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 537-572, August.
    5. Fatemeh Ehsani & Monireh Hosseini, 2024. "Customer churn prediction using a novel meta-classifier: an investigation on transaction, Telecommunication and customer churn datasets," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-31, August.
    6. Satish Kumar & Weng Marc Lim & Nitesh Pandey & J. Christopher Westland, 2021. "20 years of Electronic Commerce Research," Electronic Commerce Research, Springer, vol. 21(1), pages 1-40, March.
    7. Jianian Wang & Sheng Zhang & Yanghua Xiao & Rui Song, 2021. "A Review on Graph Neural Network Methods in Financial Applications," Papers 2111.15367, arXiv.org, revised Apr 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    2. William Arbour, 2021. "Can Recidivism be Prevented from Behind Bars? Evidence from a Behavioral Program," Working Papers tecipa-683, University of Toronto, Department of Economics.
    3. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    4. Stephen Jarvis & Olivier Deschenes & Akshaya Jha, 2022. "The Private and External Costs of Germany’s Nuclear Phase-Out," Journal of the European Economic Association, European Economic Association, vol. 20(3), pages 1311-1346.
    5. Hayakawa, Kazunobu & Keola, Souknilanh & Silaphet, Korrakoun & Yamanouchi, Kenta, 2022. "Estimating the impacts of international bridges on foreign firm locations: a machine learning approach," IDE Discussion Papers 847, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    6. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    7. Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
    8. Labro, Eva & Lang, Mark & Omartian, James D., 2023. "Predictive analytics and centralization of authority," Journal of Accounting and Economics, Elsevier, vol. 75(1).
    9. J. Michelle Brock & Ralph De Haas, 2023. "Discriminatory Lending: Evidence from Bankers in the Lab," American Economic Journal: Applied Economics, American Economic Association, vol. 15(2), pages 31-68, April.
    10. Frondel, Manuel & Kussel, Gerhard & Sommer, Stephan & Vance, Colin, 2019. "Local cost for global benefit: The case of wind turbines," Ruhr Economic Papers 791, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen, revised 2019.
    11. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    12. Eliaz, Kfir & Spiegler, Ran, 2022. "On incentive-compatible estimators," Games and Economic Behavior, Elsevier, vol. 132(C), pages 204-220.
    13. Piasenti, Stefano & Valente, Marica & van Veldhuizen, Roel & Pfeifer, Gregor, 2023. "Does Unfairness Hurt Women? The Effects of Losing Unfair Competitions," IZA Discussion Papers 16324, Institute of Labor Economics (IZA).
    14. Elek, Péter & Bíró, Anikó, 2021. "Regional differences in diabetes across Europe – regression and causal forest analyses," Economics & Human Biology, Elsevier, vol. 40(C).
    15. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    16. Montiel Olea, José Luis & Nesbit, James, 2021. "(Machine) learning parameter regions," Journal of Econometrics, Elsevier, vol. 222(1), pages 716-744.
    17. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    19. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    20. Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:20:y:2020:i:2:d:10.1007_s10660-020-09409-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.