IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v315y2022i1d10.1007_s10479-022-04645-z.html
   My bibliography  Save this article

Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations

Author

Listed:
  • Jian-Jun Wang

    (Dalian University of Technology)

  • Zongli Dai

    (Dalian University of Technology)

  • Ai-Chih Chang

    (New Jersey Institute of Technology)

  • Jim Junmin Shi

    (New Jersey Institute of Technology)

Abstract

Operating Room (OR) management has been among the mainstream of hospital management research, as ORs are commonly considered as one of the most critical and expensive resources. The complicated connection and interplay between ORs and their upstream and downstream units has recently attracted research attention to focus more on allocating medical resources efficiently for the sake of a balanced coordination. As a critical step, surgical scheduling in the presence of uncertain surgery durations is pivotal but rather challenging since a patient cannot be hospitalized if a recovery bed will not be available to accommodate the admission. To tackle the challenge, we propose an overflow strategy that allows patients to be assigned to an undesignated department if the designated one is full. It has been proved that overflow strategy can successfully alleviate the imbalance of capacity utilization. However, some studies indicate that implementation of the overflow strategy exacerbates the readmission rate as well as the length of stay (LOS). To rigorously examine the overflow strategy and explore its optimal solution, we propose a Fuzzy model for surgical scheduling by explicitly considering downstream shortage, as well as the uncertainty of surgery duration and patient LOS. To solve the Fuzzy model, a hybrid algorithm (so-called GA-P) is developed, stemming from Genetic Algorithm (GA). Extensive numerical results demonstrate the plausible efficiency of the GA-P algorithm, especially for large-scale scheduling problems (e.g., comprehensive hospitals). Additionally, it is shown that the overflow cost plays a critical role in determining the efficiency of the overflow strategy; viz., benefits from the overflow strategy can be reduced as the overflow cost increases, and eventually almost vanishes when the cost becomes sufficiently large. Finally, the Fuzzy model is tested to be effective in terms of simplicity and reliability, yet without cannibalizing the patient admission rate.

Suggested Citation

  • Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
  • Handle: RePEc:spr:annopr:v:315:y:2022:i:1:d:10.1007_s10479-022-04645-z
    DOI: 10.1007/s10479-022-04645-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04645-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04645-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2020. "Column-generation-based heuristic approaches to stochastic surgery scheduling with downstream capacity constraints," International Journal of Production Economics, Elsevier, vol. 229(C).
    2. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    3. J. G. Dai & Pengyi Shi, 2019. "Inpatient Overflow: An Approximate Dynamic Programming Approach," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 894-911, October.
    4. Oleg V. Shylo & Oleg A. Prokopyev & Andrew J. Schaefer, 2013. "Stochastic Operating Room Scheduling for High-Volume Specialties Under Block Booking," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 682-692, November.
    5. Junmin Shi & Yao Zhao, 2010. "Technical note: Some structural results on acyclic supply chains," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 605-613, September.
    6. Long Gao & Jim (Junmin) Shi & Michael F. Gorman & Ting Luo, 2020. "Business Analytics for Intermodal Capacity Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 310-329, March.
    7. Michael N. Katehakis & Benjamin Melamed & Jim (Junmin) Shi, 2016. "Cash-Flow Based Dynamic Inventory Management," Production and Operations Management, Production and Operations Management Society, vol. 25(9), pages 1558-1575, September.
    8. Arezoo Atighehchian & Mohammad Mehdi Sepehri & Pejman Shadpour & Kamran Kianfar, 2020. "A two-step stochastic approach for operating rooms scheduling in multi-resource environment," Annals of Operations Research, Springer, vol. 292(1), pages 191-214, September.
    9. Hummy Song & Anita L. Tucker & Ryan Graue & Sarah Moravick & Julius J. Yang, 2020. "Capacity Pooling in Hospitals: The Hidden Consequences of Off-Service Placement," Management Science, INFORMS, vol. 66(9), pages 3825-3842, September.
    10. Kumar, Ashwani & Costa, Alysson M. & Fackrell, Mark & Taylor, Peter G., 2018. "A sequential stochastic mixed integer programming model for tactical master surgery scheduling," European Journal of Operational Research, Elsevier, vol. 270(2), pages 734-746.
    11. Lee, Sangbok & Yih, Yuehwern, 2014. "Reducing patient-flow delays in surgical suites through determining start-times of surgical cases," European Journal of Operational Research, Elsevier, vol. 238(2), pages 620-629.
    12. Nickolas K. Freeman & Sharif H. Melouk & John Mittenthal, 2016. "A Scenario-Based Approach for Operating Theater Scheduling Under Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 245-261, May.
    13. Vahid Roshanaei & Curtiss Luong & Dionne M. Aleman & David R. Urbach, 2017. "Collaborative Operating Room Planning and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 558-580, August.
    14. Chang, Jasmine (Aichih) & Katehakis, Michael N. & Shi, Jim (Junmin) & Yan, Zhipeng, 2021. "Blockchain-empowered Newsvendor optimization," International Journal of Production Economics, Elsevier, vol. 238(C).
    15. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2019. "A two-level optimization model for elective surgery scheduling with downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 276(2), pages 602-613.
    16. René Bekker & Ger Koole & Dennis Roubos, 2017. "Flexible bed allocations for hospital wards," Health Care Management Science, Springer, vol. 20(4), pages 453-466, December.
    17. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    18. van den Broek d’Obrenan, Anne & Ridder, Ad & Roubos, Dennis & Stougie, Leen, 2020. "Minimizing bed occupancy variance by scheduling patients under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(1), pages 336-349.
    19. Guillermo Durán & Pablo A. Rey & Patricio Wolff, 2017. "Solving the operating room scheduling problem with prioritized lists of patients," Annals of Operations Research, Springer, vol. 258(2), pages 395-414, November.
    20. Min, Daiki & Yih, Yuehwern, 2010. "Scheduling elective surgery under uncertainty and downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 206(3), pages 642-652, November.
    21. Thomas J. Best & Burhaneddin Sandıkçı & Donald D. Eisenstein & David O. Meltzer, 2015. "Managing Hospital Inpatient Bed Capacity Through Partitioning Care into Focused Wings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 157-176, May.
    22. Xiao, Tiaojun & (Junmin) Shi, Jim, 2016. "Pricing and supply priority in a dual-channel supply chain," European Journal of Operational Research, Elsevier, vol. 254(3), pages 813-823.
    23. Linda V. Green, 2012. "OM Forum--The Vital Role of Operations Analysis in Improving Healthcare Delivery," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 488-494, October.
    24. Belien, Jeroen & Demeulemeester, Erik, 2007. "Building cyclic master surgery schedules with leveled resulting bed occupancy," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1185-1204, January.
    25. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    26. Zhong-Ping Li & Jian-Jun Wang & Ai-Chih Chang & Jim Shi, 2021. "Capacity reallocation via sinking high-quality resource in a hierarchical healthcare system," Annals of Operations Research, Springer, vol. 300(1), pages 97-135, May.
    27. Navid Izady & Israa Mohamed, 2021. "A Clustered Overflow Configuration of Inpatient Beds in Hospitals," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 139-154, 1-2.
    28. Jimenez, Mariano & Arenas, Mar & Bilbao, Amelia & Rodri'guez, M. Victoria, 2007. "Linear programming with fuzzy parameters: An interactive method resolution," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1599-1609, March.
    29. Neyshabouri, Saba & Berg, Bjorn P., 2017. "Two-stage robust optimization approach to elective surgery and downstream capacity planning," European Journal of Operational Research, Elsevier, vol. 260(1), pages 21-40.
    30. Yigal Gerchak & Diwakar Gupta & Mordechai Henig, 1996. "Reservation Planning for Elective Surgery Under Uncertain Demand for Emergency Surgery," Management Science, INFORMS, vol. 42(3), pages 321-334, March.
    31. Pengyi Shi & Mabel C. Chou & J. G. Dai & Ding Ding & Joe Sim, 2016. "Models and Insights for Hospital Inpatient Operations: Time-Dependent ED Boarding Time," Management Science, INFORMS, vol. 62(1), pages 1-28, January.
    32. Bastos, Leonardo S.L. & Marchesi, Janaina F. & Hamacher, Silvio & Fleck, Julia L., 2019. "A mixed integer programming approach to the patient admission scheduling problem," European Journal of Operational Research, Elsevier, vol. 273(3), pages 831-840.
    33. Nan Liu & Van‐Anh Truong & Xinshang Wang & Brett R. Anderson, 2019. "Integrated Scheduling and Capacity Planning with Considerations for Patients’ Length‐of‐Stays," Production and Operations Management, Production and Operations Management Society, vol. 28(7), pages 1735-1756, July.
    34. Fügener, Andreas & Hans, Erwin W. & Kolisch, Rainer & Kortbeek, Nikky & Vanberkel, Peter T., 2014. "Master surgery scheduling with consideration of multiple downstream units," European Journal of Operational Research, Elsevier, vol. 239(1), pages 227-236.
    35. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    36. Junmin Shi & Michael Katehakis & Benjamin Melamed, 2013. "Martingale methods for pricing inventory penalties under continuous replenishment and compound renewal demands," Annals of Operations Research, Springer, vol. 208(1), pages 593-612, September.
    37. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    38. Jim (Junmin) Shi & Yao Zhao & Rose B. Karimi Kiwanuka & Jasmine (Aichih) Chang, 2019. "Optimal Selling Policies for Farmer Cooperatives," Production and Operations Management, Production and Operations Management Society, vol. 28(12), pages 3060-3080, December.
    39. Sujit De & Shib Sana, 2015. "Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach," Annals of Operations Research, Springer, vol. 233(1), pages 57-76, October.
    40. Sujeet Kumar Singh & Shiv Prasad Yadav, 2018. "Intuitionistic fuzzy multi-objective linear programming problem with various membership functions," Annals of Operations Research, Springer, vol. 269(1), pages 693-707, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanbo Ma & Kaiyue Liu & Zheng Li & Xiang Chen, 2022. "Robust Operating Room Scheduling Model with Violation Probability Consideration under Uncertain Surgery Duration," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    2. Jian-Jun Wang & Zongli Dai & Wenxuan Zhang & Jim Junmin Shi, 2023. "Operating room scheduling for non-operating room anesthesia with emergency uncertainty," Annals of Operations Research, Springer, vol. 321(1), pages 565-588, February.
    3. Şeyda Gür & Mehmet Pınarbaşı & Hacı Mehmet Alakaş & Tamer Eren, 2023. "Operating room scheduling with surgical team: a new approach with constraint programming and goal programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1061-1085, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Jian-Jun Wang & Zongli Dai & Wenxuan Zhang & Jim Junmin Shi, 2023. "Operating room scheduling for non-operating room anesthesia with emergency uncertainty," Annals of Operations Research, Springer, vol. 321(1), pages 565-588, February.
    3. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    4. Loïc Deklerck & Babak Akbarzadeh & Broos Maenhout, 2022. "Constructing and evaluating a master surgery schedule using a service-level approach," Operational Research, Springer, vol. 22(4), pages 3663-3711, September.
    5. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    6. Wang, Ziwei & Chen, Hongmin & Luo, Jun & Wang, Chunming & Xu, Xinyi & Zhou, Ying, 2024. "Sharing service in healthcare systems: A recent survey," Omega, Elsevier, vol. 129(C).
    7. Shehadeh, Karmel S. & Padman, Rema, 2021. "A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity," European Journal of Operational Research, Elsevier, vol. 290(3), pages 901-913.
    8. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    9. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    10. van den Broek d’Obrenan, Anne & Ridder, Ad & Roubos, Dennis & Stougie, Leen, 2020. "Minimizing bed occupancy variance by scheduling patients under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(1), pages 336-349.
    11. Omolbanin Mashkani & Andreas T. Ernst & Dhananjay Thiruvady & Hanyu Gu, 2023. "Minimizing patients total clinical condition deterioration in operating theatre departments," Annals of Operations Research, Springer, vol. 328(1), pages 821-857, September.
    12. Ankit Bansal & Jean-Philippe Richard & Bjorn P. Berg & Yu-Li Huang, 2024. "A Sequential Follower Refinement Algorithm for Robust Surgery Scheduling," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 918-937, May.
    13. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    14. Wang, Lien & Demeulemeester, Erik & Vansteenkiste, Nancy & Rademakers, Frank E., 2024. "Capacity and surgery partitioning: An approach for improving surgery scheduling in the inpatient surgical department," European Journal of Operational Research, Elsevier, vol. 313(1), pages 112-128.
    15. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    16. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    17. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2020. "Column-generation-based heuristic approaches to stochastic surgery scheduling with downstream capacity constraints," International Journal of Production Economics, Elsevier, vol. 229(C).
    18. Zhong-Ping Li & Jian-Jun Wang & Ai-Chih Chang & Jim Shi, 2021. "Capacity reallocation via sinking high-quality resource in a hierarchical healthcare system," Annals of Operations Research, Springer, vol. 300(1), pages 97-135, May.
    19. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    20. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:315:y:2022:i:1:d:10.1007_s10479-022-04645-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.