IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v276y2019i2p602-613.html
   My bibliography  Save this article

A two-level optimization model for elective surgery scheduling with downstream capacity constraints

Author

Listed:
  • Zhang, Jian
  • Dridi, Mahjoub
  • El Moudni, Abdellah

Abstract

This paper addresses an elective surgery scheduling problem involving capacity constraints for operating rooms and downstream surgical intensive care units (SICU). Considering the uncertainties in surgery durations, lengths of stay, and new arrivals of patients, we seek to provide stochastically optimized surgery schedules for surgical managers. Conventional formulations (e.g. stochastic programming) for the studied problem mainly optimize the schedule of one single decision period, without consideration of the correlations between the present and successive periods. To overcome this short-sightedness, a novel two-level optimization model is proposed in this paper: at the first level, the high-priority patients that will be scheduled are selected from the waiting list; at the second level, every selected patient is assigned to a specific surgical block. The sub-problem of the first level is modeled as a Markov decision process to reduce the expected total cost on a long-term basis; the second level is formulated as a stochastic programming problem, which optimizes the schedule over a short-term planning horizon. Intensive structural analyses are conducted for the proposed model to simplify the solution procedure. An approximate dynamic programming approach based on recursive least-squares temporal difference learning is then proposed to solve the problem. Numerical experiments are carried out to compare the proposed model with a pure stochastic programming model. The results indicate that the policy obtained from the proposed model possesses considerable advantages in reducing the total cost, shortening waiting time for patients, and improving the utilization rate of hospital facilities.

Suggested Citation

  • Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2019. "A two-level optimization model for elective surgery scheduling with downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 276(2), pages 602-613.
  • Handle: RePEc:eee:ejores:v:276:y:2019:i:2:p:602-613
    DOI: 10.1016/j.ejor.2019.01.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719300712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.01.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aida Jebali & Ali Diabat, 2015. "A stochastic model for operating room planning under capacity constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7252-7270, December.
    2. Angela Testi & Elena Tanfani & Giancarlo Torre, 2007. "A three-phase approach for operating theatre schedules," Health Care Management Science, Springer, vol. 10(2), pages 163-172, June.
    3. Siqueira, Cecília L. & Arruda, Edilson F. & Bahiense, Laura & Bahr, Germana L. & Motta, Geraldo R., 2018. "Long-term integrated surgery room optimization and recovery ward planning, with a case study in the Brazilian National Institute of Traumatology and Orthopedics (INTO)," European Journal of Operational Research, Elsevier, vol. 264(3), pages 870-883.
    4. Lamiri, Mehdi & Grimaud, Frédéric & Xie, Xiaolan, 2009. "Optimization methods for a stochastic surgery planning problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 400-410, August.
    5. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    6. Adan, Ivo & Bekkers, Jos & Dellaert, Nico & Jeunet, Jully & Vissers, Jan, 2011. "Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources," European Journal of Operational Research, Elsevier, vol. 213(1), pages 290-308, August.
    7. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    8. Astaraky, Davood & Patrick, Jonathan, 2015. "A simulation based approximate dynamic programming approach to multi-class, multi-resource surgical scheduling," European Journal of Operational Research, Elsevier, vol. 245(1), pages 309-319.
    9. Lamiri, Mehdi & Xie, Xiaolan & Dolgui, Alexandre & Grimaud, Frederic, 2008. "A stochastic model for operating room planning with elective and emergency demand for surgery," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1026-1037, March.
    10. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    11. Neyshabouri, Saba & Berg, Bjorn P., 2017. "Two-stage robust optimization approach to elective surgery and downstream capacity planning," European Journal of Operational Research, Elsevier, vol. 260(1), pages 21-40.
    12. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    13. Marques, Inês & Captivo, M. Eugénia, 2017. "Different stakeholders’ perspectives for a surgical case assignment problem: Deterministic and robust approaches," European Journal of Operational Research, Elsevier, vol. 261(1), pages 260-278.
    14. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    15. Min, Daiki & Yih, Yuehwern, 2010. "Scheduling elective surgery under uncertainty and downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 206(3), pages 642-652, November.
    16. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shehadeh, Karmel S. & Padman, Rema, 2021. "A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity," European Journal of Operational Research, Elsevier, vol. 290(3), pages 901-913.
    2. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    3. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    4. Shi, Yong & Boudouh, Toufik & Grunder, Olivier, 2019. "A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 52-95.
    5. Rafael L. Patrão & Reinaldo C. Garcia & João M. da Silva, 2022. "An Integrated Two-Level Integer Linear Program (ILP) Model for Elective Surgery Scheduling: A Case Study in an Italian Hospital," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    6. Anders Reenberg Andersen & Thomas Jacob Riis Stidsen & Line Blander Reinhardt, 2020. "Simulation-Based Rolling Horizon Scheduling for Operating Theatres," SN Operations Research Forum, Springer, vol. 1(2), pages 1-26, June.
    7. Guo, Yan & Yu, Xinning & Zhou, Caifeng & Lyu, Gaoyan, 2021. "Government subsidies for preventing supply disruption when the supplier has an outside option under competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    8. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    9. Gökalp, E. & Gülpınar, N. & Doan, X.V., 2023. "Dynamic surgery management under uncertainty," European Journal of Operational Research, Elsevier, vol. 309(2), pages 832-844.
    10. Dai, Jiajun & Geng, Na & Xie, Xiaolan, 2021. "Dynamic advance scheduling of outpatient appointments in a moving booking window," European Journal of Operational Research, Elsevier, vol. 292(2), pages 622-632.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    2. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    3. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    4. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    5. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    6. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2020. "Column-generation-based heuristic approaches to stochastic surgery scheduling with downstream capacity constraints," International Journal of Production Economics, Elsevier, vol. 229(C).
    7. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    8. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    9. Koppka, Lisa & Wiesche, Lara & Schacht, Matthias & Werners, Brigitte, 2018. "Optimal distribution of operating hours over operating rooms using probabilities," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1156-1171.
    10. Michael Samudra & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2017. "Due time driven surgery scheduling," Health Care Management Science, Springer, vol. 20(3), pages 326-352, September.
    11. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    12. Shehadeh, Karmel S. & Padman, Rema, 2021. "A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity," European Journal of Operational Research, Elsevier, vol. 290(3), pages 901-913.
    13. Aida Jebali & Ali Diabat, 2015. "A stochastic model for operating room planning under capacity constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7252-7270, December.
    14. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    15. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    16. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    17. Omolbanin Mashkani & Andreas T. Ernst & Dhananjay Thiruvady & Hanyu Gu, 2023. "Minimizing patients total clinical condition deterioration in operating theatre departments," Annals of Operations Research, Springer, vol. 328(1), pages 821-857, September.
    18. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    19. Jose M. Molina-Pariente & Erwin W. Hans & Jose M. Framinan, 2018. "A stochastic approach for solving the operating room scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 224-251, June.
    20. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:276:y:2019:i:2:p:602-613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.