IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v321y2023i1d10.1007_s10479-022-04870-6.html
   My bibliography  Save this article

Operating room scheduling for non-operating room anesthesia with emergency uncertainty

Author

Listed:
  • Jian-Jun Wang

    (Dalian University of Technology)

  • Zongli Dai

    (Dalian University of Technology)

  • Wenxuan Zhang

    (Dalian University of Technology)

  • Jim Junmin Shi

    (New Jersey Institute of Technology)

Abstract

How to improve the efficiency of operating rooms (ORs) has always been a challenging problem in the context of healthcare operations management. This paper focuses on the research of operating room scheduling under non-operating room anesthesia (NORA) mechanism, in the presence of the uncertainty of emergency arrivals. In particular, we examine the advantages of the NORA mechanism in comparison with traditional surgical anesthesia practice under different operating room settings. Operationally, the process is comprised of two stages: (1) initial scheduling and (2) rescheduling. In the first stage, the initial schedule for elective surgeries under NORA is first performed through our developed model. With experiments, it is shown that for different operating room settings, the NORA mechanism can significantly improve the operating room utilization in comparison with the traditional OR anesthesia process. In the second stage of rescheduling, our experiment results show that the rescheduling model can effectively address the disruptions caused by the random arrival of emergency patients.

Suggested Citation

  • Jian-Jun Wang & Zongli Dai & Wenxuan Zhang & Jim Junmin Shi, 2023. "Operating room scheduling for non-operating room anesthesia with emergency uncertainty," Annals of Operations Research, Springer, vol. 321(1), pages 565-588, February.
  • Handle: RePEc:spr:annopr:v:321:y:2023:i:1:d:10.1007_s10479-022-04870-6
    DOI: 10.1007/s10479-022-04870-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04870-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04870-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oleg V. Shylo & Oleg A. Prokopyev & Andrew J. Schaefer, 2013. "Stochastic Operating Room Scheduling for High-Volume Specialties Under Block Booking," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 682-692, November.
    2. Long Gao & Jim (Junmin) Shi & Michael F. Gorman & Ting Luo, 2020. "Business Analytics for Intermodal Capacity Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 310-329, March.
    3. Wim Vancroonenburg & Patrick Causmaecker & Greet Vanden Berghe, 2016. "A study of decision support models for online patient-to-room assignment planning," Annals of Operations Research, Springer, vol. 239(1), pages 253-271, April.
    4. Nickolas K. Freeman & Sharif H. Melouk & John Mittenthal, 2016. "A Scenario-Based Approach for Operating Theater Scheduling Under Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 245-261, May.
    5. Li, Zhong-Ping & Wang, Jian-Jun & Perera, Sandun & Shi, Jim (Junmin), 2022. "Coordination of a supply chain with Nash bargaining fairness concerns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    6. Sebastian Rachuba & Brigitte Werners, 2014. "A robust approach for scheduling in hospitals using multiple objectives," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(4), pages 546-556, April.
    7. Mengyu Guo & Su Wu & Binfeng Li & Jie Song & Youping Rong, 2016. "Integrated scheduling of elective surgeries and surgical nurses for operating room suites," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 166-181, June.
    8. Kyung Sung Jung & Michael Pinedo & Chelliah Sriskandarajah & Vikram Tiwari, 2019. "Scheduling Elective Surgeries with Emergency Patients at Shared Operating Rooms," Production and Operations Management, Production and Operations Management Society, vol. 28(6), pages 1407-1430, June.
    9. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    10. Abbas Al-Refaie & Mays Judeh & Toly Chen, 2018. "Optimal multiple-period scheduling and sequencing of operating room and intensive care unit," Operational Research, Springer, vol. 18(3), pages 645-670, October.
    11. Bovim, Thomas Reiten & Christiansen, Marielle & Gullhav, Anders N. & Range, Troels Martin & Hellemo, Lars, 2020. "Stochastic master surgery scheduling," European Journal of Operational Research, Elsevier, vol. 285(2), pages 695-711.
    12. Wu, Jiang & Zhang, Pei-wen & Wang, Yu & Shi, Jim (Junmin), 2022. "Integrated aviation model and metaheuristic algorithm for hub-and-spoke network design and airline fleet planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    13. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    14. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    15. Wang, Jian-Jun & Li, Zhong-Ping & Shi, Jim (Junmin) & Chang, Ai-Chih (Jasmine), 2021. "Hospital referral and capacity strategies in the two-tier healthcare systems," Omega, Elsevier, vol. 100(C).
    16. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    17. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    18. (Ai-Chih) Chang, Jasmine & Lu, Haibing & (Junmin) Shi, Jim, 2019. "Stockout risk of production-inventory systems with compound Poisson demands," Omega, Elsevier, vol. 83(C), pages 181-198.
    19. Michael N. Katehakis & Benjamin Melamed & Jim (Junmin) Shi, 2016. "Cash-Flow Based Dynamic Inventory Management," Production and Operations Management, Production and Operations Management Society, vol. 25(9), pages 1558-1575, September.
    20. Arezoo Atighehchian & Mohammad Mehdi Sepehri & Pejman Shadpour & Kamran Kianfar, 2020. "A two-step stochastic approach for operating rooms scheduling in multi-resource environment," Annals of Operations Research, Springer, vol. 292(1), pages 191-214, September.
    21. Chaithanya Bandi & Diwakar Gupta, 2020. "Operating Room Staffing and Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 958-974, September.
    22. Lamiri, Mehdi & Xie, Xiaolan & Dolgui, Alexandre & Grimaud, Frederic, 2008. "A stochastic model for operating room planning with elective and emergency demand for surgery," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1026-1037, March.
    23. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    24. Chang, Jasmine (Aichih) & Katehakis, Michael N. & Shi, Jim (Junmin) & Yan, Zhipeng, 2021. "Blockchain-empowered Newsvendor optimization," International Journal of Production Economics, Elsevier, vol. 238(C).
    25. Aichih (Jasmine) Chang & Nesreen El-Rayes & Jim Shi, 2022. "Blockchain Technology for Supply Chain Management: A Comprehensive Review," FinTech, MDPI, vol. 1(2), pages 1-15, June.
    26. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    27. Xuhan Tian & Junmin (Jim) Shi & Xiangtong Qi, 2022. "Stochastic Sequential Allocations for Creative Crowdsourcing," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 697-714, February.
    28. Zhong-Ping Li & Jian-Jun Wang & Ai-Chih Chang & Jim Shi, 2021. "Capacity reallocation via sinking high-quality resource in a hierarchical healthcare system," Annals of Operations Research, Springer, vol. 300(1), pages 97-135, May.
    29. Riitta Marjamaa & Paulus Torkki & Eero Hirvensalo & Olli Kirvelä, 2009. "What is the best workflow for an operating room? A simulation study of five scenarios," Health Care Management Science, Springer, vol. 12(2), pages 142-146, June.
    30. Jim (Junmin) Shi & Yao Zhao & Rose B. Karimi Kiwanuka & Jasmine (Aichih) Chang, 2019. "Optimal Selling Policies for Farmer Cooperatives," Production and Operations Management, Production and Operations Management Society, vol. 28(12), pages 3060-3080, December.
    31. Jingui Xie & Weifen Zhuang & Marcus Ang & Mabel C. Chou & Li Luo & David D. Yao, 2021. "Analytics for Hospital Resource Planning—Two Case Studies," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1863-1885, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    3. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    4. Gökalp, E. & Gülpınar, N. & Doan, X.V., 2023. "Dynamic surgery management under uncertainty," European Journal of Operational Research, Elsevier, vol. 309(2), pages 832-844.
    5. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    6. Wang, Lien & Demeulemeester, Erik & Vansteenkiste, Nancy & Rademakers, Frank E., 2024. "Capacity and surgery partitioning: An approach for improving surgery scheduling in the inpatient surgical department," European Journal of Operational Research, Elsevier, vol. 313(1), pages 112-128.
    7. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2020. "Column-generation-based heuristic approaches to stochastic surgery scheduling with downstream capacity constraints," International Journal of Production Economics, Elsevier, vol. 229(C).
    8. Tsai, Shing Chih & Yeh, Yingchieh & Kuo, Chen Yun, 2021. "Efficient optimization algorithms for surgical scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 293(2), pages 579-593.
    9. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    10. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    11. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    12. Omolbanin Mashkani & Andreas T. Ernst & Dhananjay Thiruvady & Hanyu Gu, 2023. "Minimizing patients total clinical condition deterioration in operating theatre departments," Annals of Operations Research, Springer, vol. 328(1), pages 821-857, September.
    13. Koppka, Lisa & Wiesche, Lara & Schacht, Matthias & Werners, Brigitte, 2018. "Optimal distribution of operating hours over operating rooms using probabilities," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1156-1171.
    14. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    15. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    16. Shing Chih Tsai & Wu Hung Lin & Chia Cheng Wu & Shao Jen Weng & Ching Fen Tang, 2022. "Decision support algorithms for optimizing surgery start times considering the performance variation," Health Care Management Science, Springer, vol. 25(2), pages 208-221, June.
    17. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    18. Şeyda Gür & Mehmet Pınarbaşı & Hacı Mehmet Alakaş & Tamer Eren, 2023. "Operating room scheduling with surgical team: a new approach with constraint programming and goal programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1061-1085, December.
    19. Azar, Macarena & Carrasco, Rodrigo A. & Mondschein, Susana, 2022. "Dealing with uncertain surgery times in operating room scheduling," European Journal of Operational Research, Elsevier, vol. 299(1), pages 377-394.
    20. Arne Schulz & Malte Fliedner, 2023. "Minimizing the expected waiting time of emergency jobs," Journal of Scheduling, Springer, vol. 26(2), pages 147-167, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:321:y:2023:i:1:d:10.1007_s10479-022-04870-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.