IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v270y2018i2p734-746.html
   My bibliography  Save this article

A sequential stochastic mixed integer programming model for tactical master surgery scheduling

Author

Listed:
  • Kumar, Ashwani
  • Costa, Alysson M.
  • Fackrell, Mark
  • Taylor, Peter G.

Abstract

In this paper, we develop a stochastic mixed integer programming model to optimise the tactical master surgery schedule (MSS) in order to achieve a better patient flow under downstream capacity constraints. We optimise the process over several scheduling periods and we use various sequences of randomly generated patients’ length of stay scenario realisations to model the uncertainty in the process. This model has the particularity that the scenarios are chronologically sequential, not parallel. We use a very simple approach to enhance the non-anticipative feature of the model, and we empirically demonstrate that our approach is useful in achieving the desired objective. We use simulation to show that the most frequently optimal schedule is the best schedule for implementation. Furthermore, we analyse the effect of varying the penalty factor, an input parameter that decides the trade-off between the number of cancellations and occupancy level, on the patient flow process. Finally, we develop a robust MSS to maximise the utilisation level while keeping the number of cancellations within acceptable limits.

Suggested Citation

  • Kumar, Ashwani & Costa, Alysson M. & Fackrell, Mark & Taylor, Peter G., 2018. "A sequential stochastic mixed integer programming model for tactical master surgery scheduling," European Journal of Operational Research, Elsevier, vol. 270(2), pages 734-746.
  • Handle: RePEc:eee:ejores:v:270:y:2018:i:2:p:734-746
    DOI: 10.1016/j.ejor.2018.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718303102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Adan & Jos Bekkers & Nico Dellaert & Jan Vissers & Xiaoting Yu, 2009. "Patient mix optimisation and stochastic resource requirements: A case study in cardiothoracic surgery planning," Health Care Management Science, Springer, vol. 12(2), pages 129-141, June.
    2. Belien, Jeroen & Demeulemeester, Erik, 2007. "Building cyclic master surgery schedules with leveled resulting bed occupancy," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1185-1204, January.
    3. Pham, Dinh-Nguyen & Klinkert, Andreas, 2008. "Surgical case scheduling as a generalized job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1011-1025, March.
    4. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    5. Blake, John T. & Carter, Michael W., 2002. "A goal programming approach to strategic resource allocation in acute care hospitals," European Journal of Operational Research, Elsevier, vol. 140(3), pages 541-561, August.
    6. Santos, Lana M.R. & Munari, Pedro & Costa, Alysson M. & Santos, Ricardo H.S., 2015. "A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes," European Journal of Operational Research, Elsevier, vol. 245(2), pages 581-590.
    7. Min, Daiki & Yih, Yuehwern, 2010. "Scheduling elective surgery under uncertainty and downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 206(3), pages 642-652, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Bovim, Thomas Reiten & Christiansen, Marielle & Gullhav, Anders N. & Range, Troels Martin & Hellemo, Lars, 2020. "Stochastic master surgery scheduling," European Journal of Operational Research, Elsevier, vol. 285(2), pages 695-711.
    3. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    4. Mariana Oliveira & Filippo Visintin & Daniel Santos & Inês Marques, 2022. "Flexible master surgery scheduling: combining optimization and simulation in a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 824-858, December.
    5. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2024. "Wasserstein distributionally robust surgery scheduling with elective and emergency patients," European Journal of Operational Research, Elsevier, vol. 314(2), pages 509-522.
    6. Tsai, Shing Chih & Yeh, Yingchieh & Kuo, Chen Yun, 2021. "Efficient optimization algorithms for surgical scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 293(2), pages 579-593.
    7. F. Davarian & J. Behnamian, 2022. "Robust finite-horizon scheduling/rescheduling of operating rooms with elective and emergency surgeries under resource constraints," Journal of Scheduling, Springer, vol. 25(6), pages 625-641, December.
    8. Kamran Kianfar & Arezoo Atighehchian, 2023. "A hybrid heuristic approach to master surgery scheduling with downstream resource constraints and dividable operating room blocks," Annals of Operations Research, Springer, vol. 328(1), pages 727-754, September.
    9. Loïc Deklerck & Babak Akbarzadeh & Broos Maenhout, 2022. "Constructing and evaluating a master surgery schedule using a service-level approach," Operational Research, Springer, vol. 22(4), pages 3663-3711, September.
    10. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    2. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    3. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    4. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    5. Loïc Deklerck & Babak Akbarzadeh & Broos Maenhout, 2022. "Constructing and evaluating a master surgery schedule using a service-level approach," Operational Research, Springer, vol. 22(4), pages 3663-3711, September.
    6. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    7. Koppka, Lisa & Wiesche, Lara & Schacht, Matthias & Werners, Brigitte, 2018. "Optimal distribution of operating hours over operating rooms using probabilities," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1156-1171.
    8. Şeyda Gür & Tamer Eren & Hacı Mehmet Alakaş, 2019. "Surgical Operation Scheduling with Goal Programming and Constraint Programming: A Case Study," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    9. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    10. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    11. Peter Hulshof & Richard Boucherie & Erwin Hans & Johann Hurink, 2013. "Tactical resource allocation and elective patient admission planning in care processes," Health Care Management Science, Springer, vol. 16(2), pages 152-166, June.
    12. Siqueira, Cecília L. & Arruda, Edilson F. & Bahiense, Laura & Bahr, Germana L. & Motta, Geraldo R., 2018. "Long-term integrated surgery room optimization and recovery ward planning, with a case study in the Brazilian National Institute of Traumatology and Orthopedics (INTO)," European Journal of Operational Research, Elsevier, vol. 264(3), pages 870-883.
    13. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    14. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
    15. Lamiri, Mehdi & Grimaud, Frédéric & Xie, Xiaolan, 2009. "Optimization methods for a stochastic surgery planning problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 400-410, August.
    16. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    17. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    18. Paola Cappanera & Filippo Visintin & Carlo Banditori, 2018. "Addressing conflicting stakeholders’ priorities in surgical scheduling by goal programming," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 252-271, June.
    19. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    20. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    21. repec:ipg:wpaper:201414 is not listed on IDEAS
    22. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:270:y:2018:i:2:p:734-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.