IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i2p620-629.html
   My bibliography  Save this article

Reducing patient-flow delays in surgical suites through determining start-times of surgical cases

Author

Listed:
  • Lee, Sangbok
  • Yih, Yuehwern

Abstract

A scheduling strategy to determine starting times of surgeries in multiple operating rooms (OR) is presented. The constraints are resource limit of a downstream facility, post-anesthesia care unit (PACU), and the service time uncertainties. Given sets of surgeries that need to be done on a day, this problem is formulated as a flexible job shop model with fuzzy sets. Patient-waitings in the process flow, clinical resource idling, and total completion times are considered for evaluation. This multi-objective problem is solved by a two-stage decision process. A genetic algorithm is used for determining relative order of surgeries in the first stage and definite starting times for all the surgical cases are obtained by a decision-heuristic in the second stage. The resultant schedule is evaluated by a Monte-Carlo simulation. The performance is shown to be better than our previous approach, a simulation based scheduling which already outperforms simple scheduling rules in regional hospitals. Additionally, the ratio of PACU to OR is examined using the proposed scheduling strategy.

Suggested Citation

  • Lee, Sangbok & Yih, Yuehwern, 2014. "Reducing patient-flow delays in surgical suites through determining start-times of surgical cases," European Journal of Operational Research, Elsevier, vol. 238(2), pages 620-629.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:2:p:620-629
    DOI: 10.1016/j.ejor.2014.03.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714002823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.03.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Dinh-Nguyen & Klinkert, Andreas, 2008. "Surgical case scheduling as a generalized job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1011-1025, March.
    2. Sakawa, Masatoshi & Kubota, Ryo, 2000. "Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms," European Journal of Operational Research, Elsevier, vol. 120(2), pages 393-407, January.
    3. Dubois, Didier & Fargier, Helene & Fortemps, Philippe, 2003. "Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge," European Journal of Operational Research, Elsevier, vol. 147(2), pages 231-252, June.
    4. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    5. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    6. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    7. Jebali, AIda & Hadj Alouane, Atidel B. & Ladet, Pierre, 2006. "Operating rooms scheduling," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 52-62, February.
    8. Min, Daiki & Yih, Yuehwern, 2010. "Scheduling elective surgery under uncertainty and downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 206(3), pages 642-652, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    2. Ker, Jun-Ing & Wang, Yichuan & Hajli, Nick, 2018. "Examining the impact of health information systems on healthcare service improvement: The case of reducing in patient-flow delays in a U.S. hospital," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 188-198.
    3. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    4. Serhat Gul, 2018. "A Stochastic Programming Approach for Appointment Scheduling Under Limited Availability of Surgery Turnover Teams," Service Science, INFORMS, vol. 10(3), pages 277-288, September.
    5. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    6. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    7. Shuwan Zhu & Wenjuan Fan & Tongzhu Liu & Shanlin Yang & Panos M. Pardalos, 2020. "Dynamic three-stage operating room scheduling considering patient waiting time and surgical overtime costs," Journal of Combinatorial Optimization, Springer, vol. 39(1), pages 185-215, January.
    8. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
    9. Çelik, Batuhan & Gul, Serhat & Çelik, Melih, 2023. "A stochastic programming approach to surgery scheduling under parallel processing principle," Omega, Elsevier, vol. 115(C).
    10. Miao Bai & Robert H. Storer & Gregory L. Tonkay, 2022. "Surgery Sequencing Coordination with Recovery Resource Constraints," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1207-1223, March.
    11. Bing Wang & Xingbao Han & Xianxia Zhang & Shaohua Zhang, 2015. "Predictive-reactive scheduling for single surgical suite subject to random emergency surgery," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 949-966, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    2. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    3. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    4. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    5. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    6. Hejer Khlif Hachicha & Farah Zeghal Mansour, 2018. "Two-MILP models for scheduling elective surgeries within a private healthcare facility," Health Care Management Science, Springer, vol. 21(3), pages 376-392, September.
    7. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    8. Alessandro Agnetis & Alberto Coppi & Matteo Corsini & Gabriella Dellino & Carlo Meloni & Marco Pranzo, 2014. "A decomposition approach for the combined master surgical schedule and surgical case assignment problems," Health Care Management Science, Springer, vol. 17(1), pages 49-59, March.
    9. Zexian Zeng & Xiaolei Xie & Heidi Menaker & Susan G. Sanford-Ring & Jingshan Li, 2018. "Performance evaluation of operating room schedules in orthopedic surgery," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 198-223, June.
    10. Marques, Inês & Captivo, M. Eugénia, 2017. "Different stakeholders’ perspectives for a surgical case assignment problem: Deterministic and robust approaches," European Journal of Operational Research, Elsevier, vol. 261(1), pages 260-278.
    11. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    12. Vijayakumar, Bharathwaj & Parikh, Pratik J. & Scott, Rosalyn & Barnes, April & Gallimore, Jennie, 2013. "A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital," European Journal of Operational Research, Elsevier, vol. 224(3), pages 583-591.
    13. Morteza Lalmazloumian & M. Fazle Baki & Majid Ahmadi, 2023. "A two-stage stochastic optimization framework to allocate operating room capacity in publicly-funded hospitals under uncertainty," Health Care Management Science, Springer, vol. 26(2), pages 238-260, June.
    14. Lamiri, Mehdi & Grimaud, Frédéric & Xie, Xiaolan, 2009. "Optimization methods for a stochastic surgery planning problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 400-410, August.
    15. Riise, Atle & Mannino, Carlo & Lamorgese, Leonardo, 2016. "Recursive logic-based Benders’ decomposition for multi-mode outpatient scheduling," European Journal of Operational Research, Elsevier, vol. 255(3), pages 719-728.
    16. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    17. Paola Cappanera & Filippo Visintin & Carlo Banditori, 2018. "Addressing conflicting stakeholders’ priorities in surgical scheduling by goal programming," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 252-271, June.
    18. Anders Reenberg Andersen & Thomas Jacob Riis Stidsen & Line Blander Reinhardt, 2020. "Simulation-Based Rolling Horizon Scheduling for Operating Theatres," SN Operations Research Forum, Springer, vol. 1(2), pages 1-26, June.
    19. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    20. Cheng Guo & Merve Bodur & Dionne M. Aleman & David R. Urbach, 2021. "Logic-Based Benders Decomposition and Binary Decision Diagram Based Approaches for Stochastic Distributed Operating Room Scheduling," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1551-1569, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:2:p:620-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.