IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v200y2012i1p23-3610.1007-s10479-010-0803-1.html
   My bibliography  Save this article

Pattern definition of the p-efficiency concept

Author

Listed:
  • Miguel Lejeune

Abstract

This study revisits the celebrated p-efficiency concept introduced by Prékopa (Z. Oper. Res. 34:441–461, 1990 ) and defines a p-efficient point (pLEP) as a combinatorial pattern. The new definition uses elements from the combinatorial pattern recognition field and is based on the combinatorial pattern framework for stochastic programming problems proposed in Lejeune (Stochastic programming e-print series (SPEPS) 2010-5, 2010 ). The approach is based on the binarization of the probability distribution, and the generation of a consistent partially defined Boolean function representing the combination (F,p) of the binarized probability distribution F and the enforced probability level p. A combinatorial pattern provides a compact representation of the defining characteristics of a pLEP and opens the door to new methods for the generation of pLEPs. We show that a combinatorial pattern representing a pLEP constitutes a strong and prime pattern and we derive it through the solution of an integer programming problem. Next, we demonstrate that the (finite) collection of pLEPs can be represented as a disjunctive normal form (DNF). We propose a mixed-integer programming formulation allowing for the construction of the DNF that is shown to be prime and irreducible. We illustrate the proposed method on a problem studied by Prékopa (Stochastic programming: handbook in operations research and management science, vol. 10, Elsevier, Amsterdam, 2003 ). Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Miguel Lejeune, 2012. "Pattern definition of the p-efficiency concept," Annals of Operations Research, Springer, vol. 200(1), pages 23-36, November.
  • Handle: RePEc:spr:annopr:v:200:y:2012:i:1:p:23-36:10.1007/s10479-010-0803-1
    DOI: 10.1007/s10479-010-0803-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0803-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0803-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M A Lejeune, 2008. "Preprocessing techniques and column generation algorithms for stochastically efficient demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1239-1252, September.
    2. Darinka Dentcheva & Bogumila Lai & Andrzej Ruszczyński, 2004. "Dual methods for probabilistic optimization problems ," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(2), pages 331-346, October.
    3. Miguel A. Lejeune & Andrzej Ruszczyński, 2007. "An Efficient Trajectory Method for Probabilistic Production-Inventory-Distribution Problems," Operations Research, INFORMS, vol. 55(2), pages 378-394, April.
    4. Miguel A. Lejeune, 2012. "Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems," Operations Research, INFORMS, vol. 60(6), pages 1356-1372, December.
    5. Peter Hammer & Tibérius Bonates, 2006. "Logical analysis of data—An overview: From combinatorial optimization to medical applications," Annals of Operations Research, Springer, vol. 148(1), pages 203-225, November.
    6. Lejeune, Miguel & Noyan, Nilay, 2010. "Mathematical programming approaches for generating p-efficient points," European Journal of Operational Research, Elsevier, vol. 207(2), pages 590-600, December.
    7. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    2. Miguel A. Lejeune, 2012. "Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems," Operations Research, INFORMS, vol. 60(6), pages 1356-1372, December.
    3. Lukáš Adam & Martin Branda & Holger Heitsch & René Henrion, 2020. "Solving joint chance constrained problems using regularization and Benders’ decomposition," Annals of Operations Research, Springer, vol. 292(2), pages 683-709, September.
    4. Lejeune, Miguel A. & Shen, Siqian, 2016. "Multi-objective probabilistically constrained programs with variable risk: Models for multi-portfolio financial optimization," European Journal of Operational Research, Elsevier, vol. 252(2), pages 522-539.
    5. Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
    6. Lejeune, Miguel A., 2013. "Probabilistic modeling of multiperiod service levels," European Journal of Operational Research, Elsevier, vol. 230(2), pages 299-312.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel A. Lejeune, 2012. "Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems," Operations Research, INFORMS, vol. 60(6), pages 1356-1372, December.
    2. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    3. Zheng, Xiaojin & Wu, Baiyi & Cui, Xueting, 2017. "Cell-and-bound algorithm for chance constrained programs with discrete distributions," European Journal of Operational Research, Elsevier, vol. 260(2), pages 421-431.
    4. Lejeune, Miguel & Noyan, Nilay, 2010. "Mathematical programming approaches for generating p-efficient points," European Journal of Operational Research, Elsevier, vol. 207(2), pages 590-600, December.
    5. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    6. Gianpiero Canessa & Julian A. Gallego & Lewis Ntaimo & Bernardo K. Pagnoncelli, 2019. "An algorithm for binary linear chance-constrained problems using IIS," Computational Optimization and Applications, Springer, vol. 72(3), pages 589-608, April.
    7. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    8. Lukáš Adam & Martin Branda, 2016. "Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 419-436, August.
    9. Darinka Dentcheva & Gabriela Martinez, 2012. "Augmented Lagrangian method for probabilistic optimization," Annals of Operations Research, Springer, vol. 200(1), pages 109-130, November.
    10. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    11. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    12. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
    13. Lejeune, Miguel A. & Shen, Siqian, 2016. "Multi-objective probabilistically constrained programs with variable risk: Models for multi-portfolio financial optimization," European Journal of Operational Research, Elsevier, vol. 252(2), pages 522-539.
    14. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    15. Lejeune, Miguel A., 2013. "Probabilistic modeling of multiperiod service levels," European Journal of Operational Research, Elsevier, vol. 230(2), pages 299-312.
    16. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    17. Hang Li & Zhe Zhang & Xianggen Yin & Buhan Zhang, 2020. "Preventive Security-Constrained Optimal Power Flow with Probabilistic Guarantees," Energies, MDPI, vol. 13(9), pages 1-13, May.
    18. René Henrion & Andris Möller, 2012. "A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 475-488, August.
    19. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    20. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Other publications TiSEM ab77f6f2-248a-42f1-bde1-0, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    A. Prékopa;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:200:y:2012:i:1:p:23-36:10.1007/s10479-010-0803-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.