IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i6p1356-1372.html
   My bibliography  Save this article

Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems

Author

Listed:
  • Miguel A. Lejeune

    (George Washington University, Washington, DC 20052)

Abstract

We propose a new modeling and solution method for probabilistically constrained optimization problems. The methodology is based on the integration of the stochastic programming and combinatorial pattern recognition fields. It permits the fast solution of stochastic optimization problems in which the random variables are represented by an extremely large number of scenarios. The method involves the binarization of the probability distribution and the generation of a consistent partially defined Boolean function (pdBf) representing the combination (F,p) of the binarized probability distribution F and the enforced probability level p . We show that the pdBf representing (F,p) can be compactly extended as a disjunctive normal form (DNF). The DNF is a collection of combinatorial p -patterns, each defining sufficient conditions for a probabilistic constraint to hold. We propose two linear programming formulations for the generation of p -patterns that can be subsequently used to derive a linear programming inner approximation of the original stochastic problem. A formulation allowing for the concurrent generation of a p -pattern and the solution of the deterministic equivalent of the stochastic problem is also proposed. The number of binary variables included in the deterministic equivalent formulation is not an increasing function of the number of scenarios used to represent uncertainty. Results show that large-scale stochastic problems, in which up to 50,000 scenarios are used to describe the stochastic variables, can be consistently solved to optimality within a few seconds.

Suggested Citation

  • Miguel A. Lejeune, 2012. "Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems," Operations Research, INFORMS, vol. 60(6), pages 1356-1372, December.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:6:p:1356-1372
    DOI: 10.1287/opre.1120.1120
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1120
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruce L. Miller & Harvey M. Wagner, 1965. "Chance Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 13(6), pages 930-945, December.
    2. Darinka Dentcheva & Bogumila Lai & Andrzej Ruszczyński, 2004. "Dual methods for probabilistic optimization problems ," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(2), pages 331-346, October.
    3. Gren, Ing-Marie, 2008. "Adaptation and mitigation strategies for controlling stochastic water pollution: An application to the Baltic Sea," Ecological Economics, Elsevier, vol. 66(2-3), pages 337-347, June.
    4. Tanner, Matthew W. & Ntaimo, Lewis, 2010. "IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation," European Journal of Operational Research, Elsevier, vol. 207(1), pages 290-296, November.
    5. Miguel Lejeune, 2012. "Pattern definition of the p-efficiency concept," Annals of Operations Research, Springer, vol. 200(1), pages 23-36, November.
    6. M A Lejeune, 2008. "Preprocessing techniques and column generation algorithms for stochastically efficient demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1239-1252, September.
    7. Hammer, P.L. & Kogan, A. & Lejeune, M.A., 2006. "Modeling country risk ratings using partial orders," European Journal of Operational Research, Elsevier, vol. 175(2), pages 836-859, December.
    8. Peter Hammer & Tibérius Bonates, 2006. "Logical analysis of data—An overview: From combinatorial optimization to medical applications," Annals of Operations Research, Springer, vol. 148(1), pages 203-225, November.
    9. Lejeune, Miguel & Noyan, Nilay, 2010. "Mathematical programming approaches for generating p-efficient points," European Journal of Operational Research, Elsevier, vol. 207(2), pages 590-600, December.
    10. John N. Hooker, 2007. "Integrated Methods for Optimization," International Series in Operations Research and Management Science, Springer, number 978-0-387-38274-6, April.
    11. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    12. Moshe Kress & Michal Penn & Maria Polukarov, 2007. "The minmax multidimensional knapsack problem with application to a chance‐constrained problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 656-666, September.
    13. Darinka Dentcheva & Gabriela Martinez, 2012. "Augmented Lagrangian method for probabilistic optimization," Annals of Operations Research, Springer, vol. 200(1), pages 109-130, November.
    14. Miguel A. Lejeune & Andrzej Ruszczyński, 2007. "An Efficient Trajectory Method for Probabilistic Production-Inventory-Distribution Problems," Operations Research, INFORMS, vol. 55(2), pages 378-394, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wim Ackooij, 2017. "A comparison of four approaches from stochastic programming for large-scale unit-commitment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 119-147, March.
    2. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    3. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    4. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    5. Hsia, Yong & Wu, Baiyi & Li, Duan, 2014. "New reformulations for probabilistically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 233(3), pages 550-556.
    6. Lejeune, Miguel A. & Shen, Siqian, 2016. "Multi-objective probabilistically constrained programs with variable risk: Models for multi-portfolio financial optimization," European Journal of Operational Research, Elsevier, vol. 252(2), pages 522-539.
    7. B. K. Pagnoncelli & D. Reich & M. C. Campi, 2012. "Risk-Return Trade-off with the Scenario Approach in Practice: A Case Study in Portfolio Selection," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 707-722, November.
    8. Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
    9. Lejeune, Miguel A., 2013. "Probabilistic modeling of multiperiod service levels," European Journal of Operational Research, Elsevier, vol. 230(2), pages 299-312.
    10. Miguel Lejeune, 2012. "Pattern definition of the p-efficiency concept," Annals of Operations Research, Springer, vol. 200(1), pages 23-36, November.
    11. repec:cte:idrepe:24017 is not listed on IDEAS
    12. Zheng, Xiaojin & Wu, Baiyi & Cui, Xueting, 2017. "Cell-and-bound algorithm for chance constrained programs with discrete distributions," European Journal of Operational Research, Elsevier, vol. 260(2), pages 421-431.
    13. Gianpiero Canessa & Julian A. Gallego & Lewis Ntaimo & Bernardo K. Pagnoncelli, 2019. "An algorithm for binary linear chance-constrained problems using IIS," Computational Optimization and Applications, Springer, vol. 72(3), pages 589-608, April.
    14. Lukáš Adam & Martin Branda, 2016. "Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 419-436, August.
    15. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.
    16. Balbás, Beatriz & Balbás, Raquel, 2017. "Differential equations connecting VaR and CVaR," IC3JM - Estudios = Working Papers 24017, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Lejeune, 2012. "Pattern definition of the p-efficiency concept," Annals of Operations Research, Springer, vol. 200(1), pages 23-36, November.
    2. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    3. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    4. Zheng, Xiaojin & Wu, Baiyi & Cui, Xueting, 2017. "Cell-and-bound algorithm for chance constrained programs with discrete distributions," European Journal of Operational Research, Elsevier, vol. 260(2), pages 421-431.
    5. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    6. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
    7. Lejeune, Miguel & Noyan, Nilay, 2010. "Mathematical programming approaches for generating p-efficient points," European Journal of Operational Research, Elsevier, vol. 207(2), pages 590-600, December.
    8. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    9. Gianpiero Canessa & Julian A. Gallego & Lewis Ntaimo & Bernardo K. Pagnoncelli, 2019. "An algorithm for binary linear chance-constrained problems using IIS," Computational Optimization and Applications, Springer, vol. 72(3), pages 589-608, April.
    10. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    11. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    12. Lukáš Adam & Martin Branda & Holger Heitsch & René Henrion, 2020. "Solving joint chance constrained problems using regularization and Benders’ decomposition," Annals of Operations Research, Springer, vol. 292(2), pages 683-709, September.
    13. Patrice Gaillardetz & Saeb Hachem, 2019. "Risk-Control Strategies," Papers 1908.02228, arXiv.org.
    14. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Other publications TiSEM ab77f6f2-248a-42f1-bde1-0, Tilburg University, School of Economics and Management.
    15. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    16. Nemirovski, Arkadi, 2012. "On safe tractable approximations of chance constraints," European Journal of Operational Research, Elsevier, vol. 219(3), pages 707-718.
    17. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Discussion Paper 2011-137, Tilburg University, Center for Economic Research.
    18. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.
    19. Lukáš Adam & Martin Branda, 2016. "Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 419-436, August.
    20. İhsan Yanıkoğlu & Dick den Hertog, 2013. "Safe Approximations of Ambiguous Chance Constraints Using Historical Data," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 666-681, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:6:p:1356-1372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.