IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i14p2268-d1439159.html
   My bibliography  Save this article

Dynamic Mean–Variance Portfolio Optimization with Value-at-Risk Constraint in Continuous Time

Author

Listed:
  • Tongyao Wang

    (Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Qitong Pan

    (School of Economics and Management, Fuzhou University, Fuzhou 350108, China)

  • Weiping Wu

    (School of Economics and Management, Fuzhou University, Fuzhou 350108, China)

  • Jianjun Gao

    (School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China)

  • Ke Zhou

    (Business School, Hunan University, Changsha 410082, China)

Abstract

Recognizing the importance of incorporating different risk measures in the portfolio management model, this paper examines the dynamic mean-risk portfolio optimization problem using both variance and value at risk (VaR) as risk measures. By employing the martingale approach and integrating the quantile optimization technique, we provide a solution framework for this problem. We demonstrate that, under a general market setting, the optimal terminal wealth may exhibit different patterns. When the market parameters are deterministic, we derive the closed-form solution for this problem. Examples are provided to illustrate the solution procedure of our method and demonstrate the benefits of our dynamic portfolio model compared to its static counterpart.

Suggested Citation

  • Tongyao Wang & Qitong Pan & Weiping Wu & Jianjun Gao & Ke Zhou, 2024. "Dynamic Mean–Variance Portfolio Optimization with Value-at-Risk Constraint in Continuous Time," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2268-:d:1439159
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/14/2268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/14/2268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diana Roman & Kenneth Darby-Dowman & Gautam Mitra, 2007. "Mean-risk models using two risk measures: a multi-objective approach," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 443-458.
    2. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    3. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    4. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    5. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    6. Pengyu Wei, 2018. "Risk management with weighted VaR," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 1020-1060, October.
    7. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    8. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    9. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    10. Xiangyu Cui & Duan Li & Xun Li, 2017. "Mean-Variance Policy For Discrete-Time Cone-Constrained Markets: Time Consistency In Efficiency And The Minimum-Variance Signed Supermartingale Measure," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 471-504, April.
    11. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    12. Benati, Stefano & Rizzi, Romeo, 2007. "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 423-434, January.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Francesco Cesarone & Manuel L. Martino & Fabio Tardella, 2023. "Mean-Variance-VaR portfolios: MIQP formulation and performance analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 1043-1069, September.
    15. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    2. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    3. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    4. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    5. Hui Mi & Zuo Quan Xu & Dongfang Yang, 2023. "Optimal Management of DC Pension Plan with Inflation Risk and Tail VaR Constraint," Papers 2309.01936, arXiv.org.
    6. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    7. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
    8. Francesco Cesarone & Manuel L. Martino & Fabio Tardella, 2023. "Mean-Variance-VaR portfolios: MIQP formulation and performance analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 1043-1069, September.
    9. Fangyuan Zhang, 2023. "Non-concave portfolio optimization with average value-at-risk," Mathematics and Financial Economics, Springer, volume 17, number 3, February.
    10. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    11. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2014. "Bank regulation and international financial stability: A case against the 2006 Basel framework for controlling tail risk in trading books," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 107-130.
    12. Pengyu Wei & Zuo Quan Xu, 2021. "Dynamic growth-optimum portfolio choice under risk control," Papers 2112.14451, arXiv.org.
    13. Xueting Cui & Xiaoling Sun & Shushang Zhu & Rujun Jiang & Duan Li, 2018. "Portfolio Optimization with Nonparametric Value at Risk: A Block Coordinate Descent Method," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 454-471, August.
    14. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    15. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    16. Das, Sanjiv R. & Statman, Meir, 2013. "Options and structured products in behavioral portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 137-153.
    17. Zhilin Kang & Zhongfei Li, 2018. "An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 169-195, April.
    18. Huifu Xu & Dali Zhang, 2012. "Monte Carlo methods for mean-risk optimization and portfolio selection," Computational Management Science, Springer, vol. 9(1), pages 3-29, February.
    19. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    20. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2268-:d:1439159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.