IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v248y2017i1d10.1007_s10479-016-2230-4.html
   My bibliography  Save this article

Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria

Author

Listed:
  • Ran Ji

    (George Washington University)

  • Miguel A. Lejeune

    (George Washington University)

  • Srinivas Y. Prasad

    (George Washington University)

Abstract

We study an extended set of Mean-Gini portfolio optimization models that encompasses a general version of the mean-risk formulation, the Minimal Gini model (MinG) that minimizes Gini’s Mean Differences, and the new risk-adjusted Mean-Gini Ratio (MGR) model. We analyze the properties of the various models, prove that a performance measure based on a Risk Adjusted version of the Mean Gini Ratio (RAMGR) is coherent, and establish the equivalence between maximizing this performance measure and solving for the maximal Mean-Gini ratio. We propose a linearization approach for the fractional programming formulation of the MGR model. We also conduct a thorough evaluation of the various Mean-Gini models based on four data sets that represent combinations of bullish and bearish scenarios in the in-sample and out-of-sample phases. The performance is (i) analyzed with respect to eight return, risk, and risk-adjusted criteria, (ii) benchmarked with the S&P500 index, and (iii) compared with their Mean-Variance counterparts for varying risk aversion levels and with the Minimal CVaR and Minimal Semi-Deviation models. For the data sets used in our study, our results suggest that the various Mean-Gini models almost always result in solutions that outperform the S&P500 benchmark index with respect to the out-of-sample cumulative return. Further, particular instances of Mean-Gini models result in solutions that are as good or better (for example, MinG in bullish in-sample scenarios, and MGR in bearish out-of-sample scenarios) than the solutions obtained with their counterparts in Mean-Variance, Minimal CVaR and Minimal Semi-Deviation models.

Suggested Citation

  • Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.
  • Handle: RePEc:spr:annopr:v:248:y:2017:i:1:d:10.1007_s10479-016-2230-4
    DOI: 10.1007/s10479-016-2230-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2230-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2230-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    2. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    3. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    4. Sergio Ortobelli Lozza & Haim Shalit & Frank J. Fabozzi, 2013. "Portfolio Selection Problems Consistent With Given Preference Orderings," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-38.
    5. Sergio Ortobelli & Svetlozar Rachev & Haim Shalit & Frank Fabozzi, 2009. "Orderings and Probability Functionals Consistent with Preferences," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 81-102.
    6. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    7. Fisher, Lawrence & Lorie, James H, 1970. "Some Studies of Variability of Returns on Investments in Common Stocks," The Journal of Business, University of Chicago Press, vol. 43(2), pages 99-134, April.
    8. Shalit, Haim & Yitzhaki, Shlomo, 1984. "Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets," Journal of Finance, American Finance Association, vol. 39(5), pages 1449-1468, December.
    9. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    10. Elton, Edwin J & Gruber, Martin J & Blake, Christopher R, 1996. "Survivorship Bias and Mutual Fund Performance," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1097-1120.
    11. Dentcheva, Darinka & Ruszczynski, Andrzej, 2006. "Portfolio optimization with stochastic dominance constraints," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 433-451, February.
    12. Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2008. "Beyond Sharpe ratio: Optimal asset allocation using different performance ratios," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2057-2063, October.
    13. Yitzhaki, Shlomo, 1983. "On an Extension of the Gini Inequality Index," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 617-628, October.
    14. Tiago P. Filomena & Miguel A. Lejeune, 2014. "Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 308-329, April.
    15. Gilles Sanfilippo, 2003. "Stocks, bonds and the investment horizon: a test of time diversification on the French market," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 345-351.
    16. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    17. Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
    18. Haim Shalit & Shlomo Yitzhaki, 2005. "The Mean‐Gini Efficient Portfolio Frontier," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(1), pages 59-75, March.
    19. S. V. Stoyanov & S. T. Rachev & F. J. Fabozzi, 2007. "Optimal Financial Portfolios," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 401-436.
    20. Ringuest, Jeffrey L. & Graves, Samuel B. & Case, Randy H., 2004. "Mean-Gini analysis in R&D portfolio selection," European Journal of Operational Research, Elsevier, vol. 154(1), pages 157-169, April.
    21. Yitzhaki, Shlomo, 1982. "Stochastic Dominance, Mean Variance, and Gini's Mean Difference," American Economic Review, American Economic Association, vol. 72(1), pages 178-185, March.
    22. Craig Israelsen, 2005. "A refinement to the Sharpe ratio and information ratio," Journal of Asset Management, Palgrave Macmillan, vol. 5(6), pages 423-427, April.
    23. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    24. Bey, Roger P. & Howe, Keith M., 1984. "Gini's Mean Difference and Portfolio Selection: An Empirical Evaluation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 19(3), pages 329-338, September.
    25. Svetlozar Rachev & Sergio Ortobelli & Stoyan Stoyanov & Frank J. Fabozzi & Almira Biglova, 2008. "Desirable Properties Of An Ideal Risk Measure In Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 19-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sally G. Arcidiacono & Damiano Rossello, 2022. "A hybrid approach to the discrepancy in financial performance’s robustness," Operational Research, Springer, vol. 22(5), pages 5441-5476, November.
    2. Ruchika Sehgal & Aparna Mehra, 2019. "Enhanced indexing using weighted conditional value at risk," Annals of Operations Research, Springer, vol. 280(1), pages 211-240, September.
    3. Zhenlong Jiang & Ran Ji & Kuo-Chu Chang, 2020. "A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment," JRFM, MDPI, vol. 13(7), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenlong Jiang & Ran Ji & Kuo-Chu Chang, 2020. "A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment," JRFM, MDPI, vol. 13(7), pages 1-20, July.
    2. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    3. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2017. "On the impact of conditional expectation estimators in portfolio theory," Computational Management Science, Springer, vol. 14(4), pages 535-557, October.
    4. Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
    5. Miguel A. Lejeune & John Turner, 2019. "Planning Online Advertising Using Gini Indices," Operations Research, INFORMS, vol. 67(5), pages 1222-1245, September.
    6. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    7. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    8. Kaplanski, Guy & Kroll, Yoram, 2002. "VaR Risk Measures versus Traditional Risk Measures: an Analysis and Survey," MPRA Paper 80070, University Library of Munich, Germany.
    9. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    10. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    11. Panos Xidonas & Christis Hassapis & George Mavrotas & Christos Staikouras & Constantin Zopounidis, 2018. "Multiobjective portfolio optimization: bridging mathematical theory with asset management practice," Annals of Operations Research, Springer, vol. 267(1), pages 585-606, August.
    12. Philippe Delquié, 2012. "Risk Measures from Risk-Reducing Experiments," Decision Analysis, INFORMS, vol. 9(2), pages 96-102, June.
    13. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    14. Weidong Lin & Jose Olmo & Abderrahim Taamouti, 2022. "Portfolio Selection Under Systemic Risk," Working Papers 202208, University of Liverpool, Department of Economics.
    15. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    16. Kouaissah, Noureddine, 2021. "Using multivariate stochastic dominance to enhance portfolio selection and warn of financial crises," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 480-493.
    17. Sergio Ortobelli & Sebastiano Vitali & Marco Cassader & Tomáš Tichý, 2018. "Portfolio selection strategy for fixed income markets with immunization on average," Annals of Operations Research, Springer, vol. 260(1), pages 395-415, January.
    18. Amita Sharma & Sebastian Utz & Aparna Mehra, 2017. "Omega-CVaR portfolio optimization and its worst case analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 505-539, March.
    19. Shlomo Yitzhaki, 2003. "Gini’s Mean difference: a superior measure of variability for non-normal distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 285-316.
    20. Rosella Giacometti & Sergio Ortobelli & Tomáš Tichý, 2015. "Portfolio Selection with Uncertainty Measures Consistent with Additive Shifts," Prague Economic Papers, Prague University of Economics and Business, vol. 2015(1), pages 3-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:248:y:2017:i:1:d:10.1007_s10479-016-2230-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.