IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00421756.html
   My bibliography  Save this paper

An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints

Author

Listed:
  • Pierre Bonami

    (LIF - Laboratoire d'informatique Fondamentale de Marseille - UMR 6166 - Université de la Méditerranée - Aix-Marseille 2 - Université de Provence - Aix-Marseille 1 - CNRS - Centre National de la Recherche Scientifique)

  • Miguel A. Lejeune

    (Decision Sciences Department - GW - The George Washington University)

Abstract

In this paper, we study extensions of the classical Markowitz mean-variance portfolio optimization model. First, we consider that the expected asset returns are stochastic by introducing a probabilistic constraint, which imposes that the expected return of the constructed portfolio must exceed a prescribed return threshold with a high confidence level. We study the deterministic equivalents of these models. In particular, we define under which types of probability distributions the deterministic equivalents are second-order cone programs and give closed-form formulations. Second, we account for real-world trading constraints (such as the need to diversify the investments in a number of industrial sectors, the nonprofitability of holding small positions, and the constraint of buying stocks by lots) modeled with integer variables. To solve the resulting problems, we propose an exact solution approach in which the uncertainty in the estimate of the expected returns and the integer trading restrictions are simultaneously considered. The proposed algorithmic approach rests on a nonlinear branch-and-bound algorithm that features two new branching rules. The first one is a static rule, called idiosyncratic risk branching, while the second one is dynamic and is called portfolio risk branching. The two branching rules are implemented and tested using the open-source Bonmin framework. The comparison of the computational results obtained with state-of-the-art MINLP solvers (MINLP_BB and CPLEX) and with our approach shows the effectiveness of the latter, which permits to solve to optimality problems with up to 200 assets in a reasonable amount of time. The practicality of the approach is illustrated through its use for the construction of four fund-of-funds now available on the major trading markets.

Suggested Citation

  • Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
  • Handle: RePEc:hal:journl:hal-00421756
    DOI: 10.1287/opre.1080.0599
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00421756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.