IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v258y2017i2d10.1007_s10479-016-2111-x.html
   My bibliography  Save this article

Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming

Author

Listed:
  • Leonardo Riegel Sant’Anna

    (Federal University of Rio Grande do Sul)

  • Tiago Pascoal Filomena

    (Federal University of Rio Grande do Sul)

  • Pablo Cristini Guedes

    (Federal University of Rio Grande do Sul)

  • Denis Borenstein

    (Federal University of Rio Grande do Sul
    Universidad de Cuenca)

Abstract

In this paper, we discuss the index tracking strategy using mathematical programming. First, we use a non-linear programming formulation for the index tracking problem, considering a limited number of assets. Since the problem is difficult to be solved in reasonable time by commercial mathematical packages, we apply a hybrid solution approach, combining mathematical programming and genetic algorithm. We show the efficiency of the proposed approach comparing the results with optimal solutions, with previous developed methods, and from real-world market indexes. The computational experiments focus on Ibovespa (the most important Brazilian market index), but we also present results for consolidated markets such as S&P 100 (USA), FTSE 100 (UK) and DAX (Germany). The proposed framework shows its ability to obtain very good results (gaps from the optimal solution smaller than 5 % in 8 min of CPU time) even for a highly volatile index from a developing country.

Suggested Citation

  • Leonardo Riegel Sant’Anna & Tiago Pascoal Filomena & Pablo Cristini Guedes & Denis Borenstein, 2017. "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," Annals of Operations Research, Springer, vol. 258(2), pages 849-867, November.
  • Handle: RePEc:spr:annopr:v:258:y:2017:i:2:d:10.1007_s10479-016-2111-x
    DOI: 10.1007/s10479-016-2111-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2111-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2111-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.
    2. Walter Murray & Howard Shek, 2012. "A local relaxation method for the cardinality constrained portfolio optimization problem," Computational Optimization and Applications, Springer, vol. 53(3), pages 681-709, December.
    3. Diana Barro & Elio Canestrelli, 2009. "Tracking error: a multistage portfolio model," Annals of Operations Research, Springer, vol. 165(1), pages 47-66, January.
    4. Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.
    5. Rubén Ruiz-Torrubiano & Alberto Suárez, 2009. "A hybrid optimization approach to index tracking," Annals of Operations Research, Springer, vol. 166(1), pages 57-71, February.
    6. Christian L Dunis & Richard Ho, 2005. "Cointegration portfolios of European equities for index tracking and market neutral strategies," Journal of Asset Management, Palgrave Macmillan, vol. 6(1), pages 33-52, June.
    7. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    8. Gaivoronski, Alexei A. & Krylov, Sergiy & van der Wijst, Nico, 2005. "Optimal portfolio selection and dynamic benchmark tracking," European Journal of Operational Research, Elsevier, vol. 163(1), pages 115-131, May.
    9. Guastaroba, G. & Speranza, M.G., 2012. "Kernel Search: An application to the index tracking problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 54-68.
    10. Tiago P. Filomena & Miguel A. Lejeune, 2014. "Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 308-329, April.
    11. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    12. Eugene F. Fama & Kenneth R. French, 2010. "Luck versus Skill in the Cross‐Section of Mutual Fund Returns," Journal of Finance, American Finance Association, vol. 65(5), pages 1915-1947, October.
    13. Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential evolution and combinatorial search for constrained index-tracking," Annals of Operations Research, Springer, vol. 172(1), pages 153-176, November.
    14. Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential evolution and combinatorial search for constrained index-tracking," Annals of Operations Research, Springer, vol. 172(1), pages 153-176, November.
    15. Leonardo Riegel Sant'Anna & Tiago Pascoal Filomena & Denis Borenstein, 2014. "Index Tracking with Control on the Number of Assets," Brazilian Review of Finance, Brazilian Society of Finance, vol. 12(1), pages 89-119.
    16. Enrico Angelelli & Renata Mansini & M. Speranza, 2012. "Kernel Search: a new heuristic framework for portfolio selection," Computational Optimization and Applications, Springer, vol. 51(1), pages 345-361, January.
    17. Hiroshi Konno & Annista Wijayanayake, 2001. "Minimal Cost Index Tracking Under Nonlinear Transaction Costs And Minimal Transaction Unit Constraints," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(06), pages 939-957.
    18. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    19. Canakgoz, N.A. & Beasley, J.E., 2009. "Mixed-integer programming approaches for index tracking and enhanced indexation," European Journal of Operational Research, Elsevier, vol. 196(1), pages 384-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    2. Mahdi Moeini, 2022. "Solving the index tracking problem: a continuous optimization approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 807-835, June.
    3. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    4. Gianfranco Guastaroba & Renata Mansini & Wlodzimierz Ogryczak & M. Grazia Speranza, 2020. "Enhanced index tracking with CVaR-based ratio measures," Annals of Operations Research, Springer, vol. 292(2), pages 883-931, September.
    5. Gnägi, M. & Strub, O., 2020. "Tracking and outperforming large stock-market indices," Omega, Elsevier, vol. 90(C).
    6. Frieder Meyer-Bullerdiek, 2022. "Selected Methods of optimized Sampling for Index Tracking – Evidence from German Stocks," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-8.
    7. Patrizia Beraldi & Maria Elena Bruni, 2022. "Enhanced indexation via chance constraints," Operational Research, Springer, vol. 22(2), pages 1553-1573, April.
    8. Martin Boďa & Mária Kanderová, 2018. "What is the True Effect of Rebalancing - a Higher Return or a Lower Risk?," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(6), pages 1417-1430.
    9. Chuting Sun & Qi Wu & Xing Yan, 2023. "Dynamic CVaR Portfolio Construction with Attention-Powered Generative Factor Learning," Papers 2301.07318, arXiv.org, revised Jan 2024.
    10. Julio Cezar Soares Silva & Adiel Teixeira de Almeida Filho, 2023. "A systematic literature review on solution approaches for the index tracking problem in the last decade," Papers 2306.01660, arXiv.org, revised Jun 2023.
    11. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    12. Sun, Chuting & Wu, Qi & Yan, Xing, 2024. "Dynamic CVaR portfolio construction with attention-powered generative factor learning," Journal of Economic Dynamics and Control, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Leonardo R. & Filomena, Tiago P. & Caldeira, João F., 2017. "Index tracking and enhanced indexing using cointegration and correlation with endogenous portfolio selection," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 146-157.
    2. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    3. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    4. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    5. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.
    6. Gnägi, M. & Strub, O., 2020. "Tracking and outperforming large stock-market indices," Omega, Elsevier, vol. 90(C).
    7. Emilio Ricardo Carvalhais & Antonio Marcos Duarte Júnior, 2015. "Indexation of Fixed-Income Portfolios to the IMA-B," Brazilian Business Review, Fucape Business School, vol. 12(3), pages 116-142, May.
    8. H Mezali & J E Beasley, 2013. "Quantile regression for index tracking and enhanced indexation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1676-1692, November.
    9. Julio Cezar Soares Silva & Adiel Teixeira de Almeida Filho, 2023. "A systematic literature review on solution approaches for the index tracking problem in the last decade," Papers 2306.01660, arXiv.org, revised Jun 2023.
    10. Sant’Anna, Leonardo Riegel & Caldeira, João Frois & Filomena, Tiago Pascoal, 2020. "Lasso-based index tracking and statistical arbitrage long-short strategies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    11. Mahdi Moeini, 2022. "Solving the index tracking problem: a continuous optimization approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 807-835, June.
    12. Strub, O. & Baumann, P., 2018. "Optimal construction and rebalancing of index-tracking portfolios," European Journal of Operational Research, Elsevier, vol. 264(1), pages 370-387.
    13. Meihua Wang & Chengxian Xu & Fengmin Xu & Hongang Xue, 2012. "A mixed 0–1 LP for index tracking problem with CVaR risk constraints," Annals of Operations Research, Springer, vol. 196(1), pages 591-609, July.
    14. Andriosopoulos, Kostas & Doumpos, Michael & Papapostolou, Nikos C. & Pouliasis, Panos K., 2013. "Portfolio optimization and index tracking for the shipping stock and freight markets using evolutionary algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 16-34.
    15. Fengmin Xu & Meihua Wang & Yu-Hong Dai & Dachuan Xu, 2018. "A sparse enhanced indexation model with chance and cardinality constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 5-25, January.
    16. Wu, Dexiang & Kwon, Roy H. & Costa, Giorgio, 2017. "A constrained cluster-based approach for tracking the S&P 500 index," International Journal of Production Economics, Elsevier, vol. 193(C), pages 222-243.
    17. Miguel A. Lejeune & Gülay Samatlı-Paç, 2013. "Construction of Risk-Averse Enhanced Index Funds," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 701-719, November.
    18. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    19. Bj�rn Fastrich & Sandra Paterlini & Peter Winker, 2014. "Cardinality versus q -norm constraints for index tracking," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 2019-2032, November.
    20. Liang-chuan Wu & I-chan Tsai, 2014. "Three fuzzy goal programming models for index portfolios," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(8), pages 1155-1169, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:258:y:2017:i:2:d:10.1007_s10479-016-2111-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.