IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v70y2018i1d10.1007_s10898-017-0513-1.html
   My bibliography  Save this article

A sparse enhanced indexation model with chance and cardinality constraints

Author

Listed:
  • Fengmin Xu

    (Xi’an Jiaotong University)

  • Meihua Wang

    (Xidian University
    Xi’an Jiaotong University)

  • Yu-Hong Dai

    (Chinese Academy of Sciences)

  • Dachuan Xu

    (Beijing University of Technology)

Abstract

Enhanced indexation aims to construct a portfolio to track and outperform the performance of a stock market index by employing both passive and active fund management strategies. This paper presents a novel sparse enhanced indexation model with chance and cardinality constraints. Its goal is to maximize the excess return that can be attained with a high probability, while the model allows a fund manger to limit the number of stocks in the portfolio and specify the maximum tolerable relative market risk. In particular, we model the asset returns as random variables and estimate their probability distributions by the Capital Asset Pricing Model or Fama-French 3-factor model, and measure the relative market risk with the coherent semideviation risk function. We deal with the chance constraint via distributionally robust approach and present a second-order cone programming and a semidefinite programming safe approximation for the model under different sets of potential distribution functions. A hybrid genetic algorithm is applied to solve the NP-hard problem. Numerical tests are conducted on the real data sets from major international stock markets, including USA, UK, Germany and China. The results demonstrate that the proposed model and the method can efficiently solve the enhanced indexation problem and our approach can generally achieve sparse tracking portfolios with good out-of-sample excess returns and high robustness.

Suggested Citation

  • Fengmin Xu & Meihua Wang & Yu-Hong Dai & Dachuan Xu, 2018. "A sparse enhanced indexation model with chance and cardinality constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 5-25, January.
  • Handle: RePEc:spr:jglopt:v:70:y:2018:i:1:d:10.1007_s10898-017-0513-1
    DOI: 10.1007/s10898-017-0513-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0513-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0513-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.
    2. Rubén Ruiz-Torrubiano & Alberto Suárez, 2009. "A hybrid optimization approach to index tracking," Annals of Operations Research, Springer, vol. 166(1), pages 57-71, February.
    3. Gaivoronski, Alexei A. & Krylov, Sergiy & van der Wijst, Nico, 2005. "Optimal portfolio selection and dynamic benchmark tracking," European Journal of Operational Research, Elsevier, vol. 163(1), pages 115-131, May.
    4. G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
    5. Guastaroba, G. & Speranza, M.G., 2012. "Kernel Search: An application to the index tracking problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 54-68.
    6. H Mezali & J E Beasley, 2013. "Quantile regression for index tracking and enhanced indexation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1676-1692, November.
    7. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    8. Bruce L. Miller & Harvey M. Wagner, 1965. "Chance Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 13(6), pages 930-945, December.
    9. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    10. Miguel A. Lejeune & Gülay Samatlı-Paç, 2013. "Construction of Risk-Averse Enhanced Index Funds," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 701-719, November.
    11. Ling, Aifan & Sun, Jie & Yang, Xiaoguang, 2014. "Robust tracking error portfolio selection with worst-case downside risk measures," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 178-207.
    12. Dose, Christian & Cincotti, Silvano, 2005. "Clustering of financial time series with application to index and enhanced index tracking portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 145-151.
    13. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    14. Lin, Chang-Chun & Liu, Yi-Ting, 2008. "Genetic algorithms for portfolio selection problems with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 185(1), pages 393-404, February.
    15. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    16. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    17. Chenchen Wu & Dachuan Xu & Jiawei Zhang, 2015. "Safe Approximations for Distributionally Robust Joint Chance Constrained Program," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(01), pages 1-20.
    18. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    19. Eugene F. Fama & Kenneth R. French, 2004. "The Capital Asset Pricing Model: Theory and Evidence," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 25-46, Summer.
    20. Miguel A. Lejeune, 2012. "Game Theoretical Approach for Reliable Enhanced Indexation," Decision Analysis, INFORMS, vol. 9(2), pages 146-155, June.
    21. Canakgoz, N.A. & Beasley, J.E., 2009. "Mixed-integer programming approaches for index tracking and enhanced indexation," European Journal of Operational Research, Elsevier, vol. 196(1), pages 384-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Li, Xuepeng & Xu, Fengmin & Jing, Kui, 2022. "Robust enhanced indexation with ESG: An empirical study in the Chinese Stock Market," Economic Modelling, Elsevier, vol. 107(C).
    3. Patrizia Beraldi & Maria Elena Bruni, 2022. "Enhanced indexation via chance constraints," Operational Research, Springer, vol. 22(2), pages 1553-1573, April.
    4. Zhiping Chen & Shen Peng & Abdel Lisser, 2020. "A sparse chance constrained portfolio selection model with multiple constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 825-852, August.
    5. Adrian Gepp & Geoff Harris & Bruce Vanstone, 2020. "Financial applications of semidefinite programming: a review and call for interdisciplinary research," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3527-3555, December.
    6. Zhiping Chen & Xinkai Zhuang & Jia Liu, 2019. "A Sustainability-Oriented Enhanced Indexation Model with Regime Switching and Cardinality Constraint," Sustainability, MDPI, vol. 11(15), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianfranco Guastaroba & Renata Mansini & Wlodzimierz Ogryczak & M. Grazia Speranza, 2020. "Enhanced index tracking with CVaR-based ratio measures," Annals of Operations Research, Springer, vol. 292(2), pages 883-931, September.
    2. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    3. Zhiping Chen & Xinkai Zhuang & Jia Liu, 2019. "A Sustainability-Oriented Enhanced Indexation Model with Regime Switching and Cardinality Constraint," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    4. Li, Xuepeng & Xu, Fengmin & Jing, Kui, 2022. "Robust enhanced indexation with ESG: An empirical study in the Chinese Stock Market," Economic Modelling, Elsevier, vol. 107(C).
    5. Zhiping Chen & Shen Peng & Abdel Lisser, 2020. "A sparse chance constrained portfolio selection model with multiple constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 825-852, August.
    6. Guastaroba, G. & Mansini, R. & Ogryczak, W. & Speranza, M.G., 2016. "Linear programming models based on Omega ratio for the Enhanced Index Tracking Problem," European Journal of Operational Research, Elsevier, vol. 251(3), pages 938-956.
    7. Julio Cezar Soares Silva & Adiel Teixeira de Almeida Filho, 2023. "A systematic literature review on solution approaches for the index tracking problem in the last decade," Papers 2306.01660, arXiv.org, revised Jun 2023.
    8. Wu, Dexiang & Kwon, Roy H. & Costa, Giorgio, 2017. "A constrained cluster-based approach for tracking the S&P 500 index," International Journal of Production Economics, Elsevier, vol. 193(C), pages 222-243.
    9. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    10. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    11. Huang, Jinbo & Li, Yong & Yao, Haixiang, 2022. "Partial moments and indexation investment strategies," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 39-59.
    12. Patrizia Beraldi & Maria Elena Bruni, 2022. "Enhanced indexation via chance constraints," Operational Research, Springer, vol. 22(2), pages 1553-1573, April.
    13. Spiridon Penev & Pavel Shevchenko & Wei Wu, 2019. "Myopic robust index tracking with Bregman divergence," Papers 1908.07659, arXiv.org, revised Jul 2021.
    14. Leonardo Riegel Sant’Anna & Tiago Pascoal Filomena & Pablo Cristini Guedes & Denis Borenstein, 2017. "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," Annals of Operations Research, Springer, vol. 258(2), pages 849-867, November.
    15. H Mezali & J E Beasley, 2013. "Quantile regression for index tracking and enhanced indexation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1676-1692, November.
    16. Huang, Jinbo & Li, Yong & Yao, Haixiang, 2018. "Index tracking model, downside risk and non-parametric kernel estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 103-128.
    17. Miguel A. Lejeune & Gülay Samatlı-Paç, 2013. "Construction of Risk-Averse Enhanced Index Funds," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 701-719, November.
    18. Xianhua Peng & Chenyin Gong & Xue Dong He, 2023. "Reinforcement Learning for Financial Index Tracking," Papers 2308.02820, arXiv.org.
    19. Javid, Attiya Yasmin & Ahmad, Eatzaz, 2008. "Testing multifactor capital asset pricing model in case of Pakistani market," MPRA Paper 37341, University Library of Munich, Germany.
    20. Valle, C.A. & Meade, N. & Beasley, J.E., 2014. "Absolute return portfolios," Omega, Elsevier, vol. 45(C), pages 20-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:70:y:2018:i:1:d:10.1007_s10898-017-0513-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.