IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v166y2009i1p57-7110.1007-s10479-008-0404-4.html
   My bibliography  Save this article

A hybrid optimization approach to index tracking

Author

Listed:
  • Rubén Ruiz-Torrubiano
  • Alberto Suárez

Abstract

Index tracking consists in reproducing the performance of a stock-market index by investing in a subset of the stocks included in the index. A hybrid strategy that combines an evolutionary algorithm with quadratic programming is designed to solve this NP-hard problem: Given a subset of assets, quadratic programming yields the optimal tracking portfolio that invests only in the selected assets. The combinatorial problem of identifying the appropriate assets is solved by a genetic algorithm that uses the output of the quadratic optimization as fitness function. This hybrid approach allows the identification of quasi-optimal tracking portfolios at a reduced computational cost. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • Rubén Ruiz-Torrubiano & Alberto Suárez, 2009. "A hybrid optimization approach to index tracking," Annals of Operations Research, Springer, vol. 166(1), pages 57-71, February.
  • Handle: RePEc:spr:annopr:v:166:y:2009:i:1:p:57-71:10.1007/s10479-008-0404-4
    DOI: 10.1007/s10479-008-0404-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0404-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0404-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.
    2. Manfred Gilli and Evis Kellezi, 2001. "Threshold Accepting for Index Tracking," Computing in Economics and Finance 2001 72, Society for Computational Economics.
    3. I. R. C. Buckley & R. Korn, 1998. "Optimal Index Tracking Under Transaction Costs and Impulse Control," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 315-330.
    4. Miguel Lobo & Maryam Fazel & Stephen Boyd, 2007. "Portfolio optimization with linear and fixed transaction costs," Annals of Operations Research, Springer, vol. 152(1), pages 341-365, July.
    5. Rudolf, Markus & Wolter, Hans-Jurgen & Zimmermann, Heinz, 1999. "A linear model for tracking error minimization," Journal of Banking & Finance, Elsevier, vol. 23(1), pages 85-103, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    2. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.
    3. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    4. Mahdi Moeini, 2022. "Solving the index tracking problem: a continuous optimization approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 807-835, June.
    5. Fengmin Xu & Meihua Wang & Yu-Hong Dai & Dachuan Xu, 2018. "A sparse enhanced indexation model with chance and cardinality constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 5-25, January.
    6. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    7. Meihua Wang & Chengxian Xu & Fengmin Xu & Hongang Xue, 2012. "A mixed 0–1 LP for index tracking problem with CVaR risk constraints," Annals of Operations Research, Springer, vol. 196(1), pages 591-609, July.
    8. Anubha Goel & Damir Filipovi'c & Puneet Pasricha, 2024. "Sparse Portfolio Selection via Topological Data Analysis based Clustering," Papers 2401.16920, arXiv.org, revised Dec 2024.
    9. Leonardo Riegel Sant’Anna & Tiago Pascoal Filomena & Pablo Cristini Guedes & Denis Borenstein, 2017. "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," Annals of Operations Research, Springer, vol. 258(2), pages 849-867, November.
    10. Rubio-García, Álvaro & Fernández-Lorenzo, Samuel & García-Ripoll, Juan José & Porras, Diego, 2024. "Accurate solution of the Index Tracking problem with a hybrid simulated annealing algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    11. Samuel Fern'andez-Lorenzo & Diego Porras & Juan Jos'e Garc'ia-Ripoll, 2020. "Hybrid quantum-classical optimization for financial index tracking," Papers 2008.12050, arXiv.org, revised Oct 2021.
    12. Wu, Dexiang & Kwon, Roy H. & Costa, Giorgio, 2017. "A constrained cluster-based approach for tracking the S&P 500 index," International Journal of Production Economics, Elsevier, vol. 193(C), pages 222-243.
    13. H Mezali & J E Beasley, 2013. "Quantile regression for index tracking and enhanced indexation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1676-1692, November.
    14. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meihua Wang & Chengxian Xu & Fengmin Xu & Hongang Xue, 2012. "A mixed 0–1 LP for index tracking problem with CVaR risk constraints," Annals of Operations Research, Springer, vol. 196(1), pages 591-609, July.
    2. Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential evolution and combinatorial search for constrained index-tracking," Annals of Operations Research, Springer, vol. 172(1), pages 153-176, November.
    3. Corielli, Francesco & Marcellino, Massimiliano, 2006. "Factor based index tracking," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2215-2233, August.
    4. Strub, O. & Baumann, P., 2018. "Optimal construction and rebalancing of index-tracking portfolios," European Journal of Operational Research, Elsevier, vol. 264(1), pages 370-387.
    5. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.
    6. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    7. Gnägi, M. & Strub, O., 2020. "Tracking and outperforming large stock-market indices," Omega, Elsevier, vol. 90(C).
    8. Dietmar Maringer & Olufemi Oyewumi, 2007. "Index tracking with constrained portfolios," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(1‐2), pages 57-71, January.
    9. Tingting Yang & Xiaoxia Huang, 2022. "A New Portfolio Optimization Model Under Tracking-Error Constraint with Linear Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 723-747, November.
    10. Akiko Takeda & Mahesan Niranjan & Jun-ya Gotoh & Yoshinobu Kawahara, 2013. "Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios," Computational Management Science, Springer, vol. 10(1), pages 21-49, February.
    11. Li, Qian & Bao, Liang, 2014. "Enhanced index tracking with multiple time-scale analysis," Economic Modelling, Elsevier, vol. 39(C), pages 282-292.
    12. Huang, Jinbo & Li, Yong & Yao, Haixiang, 2022. "Partial moments and indexation investment strategies," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 39-59.
    13. Anubha Goel & Damir Filipovi'c & Puneet Pasricha, 2024. "Sparse Portfolio Selection via Topological Data Analysis based Clustering," Papers 2401.16920, arXiv.org, revised Dec 2024.
    14. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    15. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    16. James Primbs & Chang Sung, 2008. "A Stochastic Receding Horizon Control Approach to Constrained Index Tracking," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 15(1), pages 3-24, March.
    17. Nikos S. Thomaidis & Timotheos Angelidis & Vassilios Vassiliadis & Georgios Dounias, 2009. "Active Portfolio Management With Cardinality Constraints: An Application Of Particle Swarm Optimization," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 535-555.
    18. Ruchika Sehgal & Aparna Mehra, 2019. "Enhanced indexing using weighted conditional value at risk," Annals of Operations Research, Springer, vol. 280(1), pages 211-240, September.
    19. Huang, Jinbo & Li, Yong & Yao, Haixiang, 2018. "Index tracking model, downside risk and non-parametric kernel estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 103-128.
    20. Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:166:y:2009:i:1:p:57-71:10.1007/s10479-008-0404-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.