Dynamic CVaR Portfolio Construction with Attention-Powered Generative Factor Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Corielli, Francesco & Marcellino, Massimiliano, 2006.
"Factor based index tracking,"
Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2215-2233, August.
- Francesco Corielli & Massimiliano Marcellino, "undated". "Factor Based Index Trading," Working Papers 209, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Marcellino, Massimiliano & Corielli, Francesco, 2002. "Factor Based Index Tracking," CEPR Discussion Papers 3265, C.E.P.R. Discussion Papers.
- Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
- Hwang, Inchang & Xu, Simon & In, Francis, 2018. "Naive versus optimal diversification: Tail risk and performance," European Journal of Operational Research, Elsevier, vol. 265(1), pages 372-388.
- repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
- Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
- Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.
- Farzan Soleymani & Eric Paquet, 2021. "Deep Graph Convolutional Reinforcement Learning for Financial Portfolio Management -- DeepPocket," Papers 2105.08664, arXiv.org.
- Gaivoronski, Alexei A. & Krylov, Sergiy & van der Wijst, Nico, 2005. "Optimal portfolio selection and dynamic benchmark tracking," European Journal of Operational Research, Elsevier, vol. 163(1), pages 115-131, May.
- Bruno P. C. Levy & Hedibert F. Lopes, 2021. "Dynamic Portfolio Allocation in High Dimensions using Sparse Risk Factors," Papers 2105.06584, arXiv.org, revised Nov 2021.
- Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2008. "Beyond Sharpe ratio: Optimal asset allocation using different performance ratios," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2057-2063, October.
- Xing Yan & Qi Wu & Wen Zhang, 2019. "Cross-sectional Learning of Extremal Dependence among Financial Assets," Papers 1905.13425, arXiv.org, revised Oct 2019.
- Nian, Ke & Coleman, Thomas F & Li, Yuying, 2021. "Learning sequential option hedging models from market data," Journal of Banking & Finance, Elsevier, vol. 133(C).
- Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019.
"Large Dynamic Covariance Matrices,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2016. "Large dynamic covariance matrices," ECON - Working Papers 231, Department of Economics - University of Zurich, revised Apr 2017.
- Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2021. "Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly [Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 236-257.
- Leonardo Riegel Sant’Anna & Tiago Pascoal Filomena & Pablo Cristini Guedes & Denis Borenstein, 2017. "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," Annals of Operations Research, Springer, vol. 258(2), pages 849-867, November.
- Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
- Kirby, Chris & Ostdiek, Barbara, 2012. "It’s All in the Timing: Simple Active Portfolio Strategies that Outperform Naïve Diversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(2), pages 437-467, April.
- Gah-Yi Ban & Noureddine El Karoui & Andrew E. B. Lim, 2018. "Machine Learning and Portfolio Optimization," Management Science, INFORMS, vol. 64(3), pages 1136-1154, March.
- Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
- Shun Chen & Lei Ge, 2019. "Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1507-1515, September.
- Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Paul Glasserman & Xingbo Xu, 2013. "Robust Portfolio Control with Stochastic Factor Dynamics," Operations Research, INFORMS, vol. 61(4), pages 874-893, August.
- Jia Zhai & Yi Cao & Xiaoquan Liu, 2020. "A neural network enhanced volatility component model," Quantitative Finance, Taylor & Francis Journals, vol. 20(5), pages 783-797, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Chuting & Wu, Qi & Yan, Xing, 2024. "Dynamic CVaR portfolio construction with attention-powered generative factor learning," Journal of Economic Dynamics and Control, Elsevier, vol. 160(C).
- Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
- Thomas Conlon & John Cotter & Iason Kynigakis, 2021.
"Machine Learning and Factor-Based Portfolio Optimization,"
Papers
2107.13866, arXiv.org.
- Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Working Papers 202111, Geary Institute, University College Dublin.
- De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022.
"Large dynamic covariance matrices: Enhancements based on intraday data,"
Journal of Banking & Finance, Elsevier, vol. 138(C).
- Gianluca De Nard & Robert F. Engle & Olivier Ledoit & Michael Wolf, 2020. "Large dynamic covariance matrices: enhancements based on intraday data," ECON - Working Papers 356, Department of Economics - University of Zurich, revised Jan 2022.
- Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
- Moura, Guilherme V. & Santos, André A.P. & Ruiz, Esther, 2020. "Comparing high-dimensional conditional covariance matrices: Implications for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 118(C).
- Stadtmüller, Immo & Auer, Benjamin R. & Schuhmacher, Frank, 2022. "On the benefits of active stock selection strategies for diversified investors," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 342-354.
- Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
- Olivier Ledoit & Michael Wolf, 2022. "Markowitz portfolios under transaction costs," ECON - Working Papers 420, Department of Economics - University of Zurich, revised Sep 2024.
- Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
- Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
- Aboura, Sofiane & Chevallier, Julien, 2017. "A new weighting-scheme for equity indexes," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 159-175.
- Hautsch, Nikolaus & Voigt, Stefan, 2019.
"Large-scale portfolio allocation under transaction costs and model uncertainty,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
- Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
- Nikolaus Hautsch & Stefan Voigt, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty," Papers 1709.06296, arXiv.org, revised Jun 2018.
- Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2024. "Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks," Papers 2407.15532, arXiv.org.
- Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
- Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
- Platanakis, Emmanouil & Sutcliffe, Charles & Ye, Xiaoxia, 2021. "Horses for courses: Mean-variance for asset allocation and 1/N for stock selection," European Journal of Operational Research, Elsevier, vol. 288(1), pages 302-317.
- Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
- Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
- Chen, Jia & Li, Degui & Linton, Oliver, 2019.
"A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
- Jia Chen & Degui Li & Oliver Linton, 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Discussion Papers 18/14, Department of Economics, University of York.
- Chen, J. & Li, D. & Linton, O., 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Cambridge Working Papers in Economics 1876, Faculty of Economics, University of Cambridge.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2023-02-20 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.07318. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.