IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v217y2012i1p54-68.html
   My bibliography  Save this article

Kernel Search: An application to the index tracking problem

Author

Listed:
  • Guastaroba, G.
  • Speranza, M.G.

Abstract

In this paper we study the problem of replicating the performances of a stock market index, i.e. the so-called index tracking problem, and the problem of out-performing a market index, i.e. the so-called enhanced index tracking problem. We introduce mixed-integer linear programming (MILP) formulations for these two problems. Furthermore, we present a heuristic framework called Kernel Search. We analyze and evaluate the behavior of several implementations of the Kernel Search framework to the solution of the index tracking problem. We show the effectiveness and efficiency of the framework comparing the performances of these heuristics with those of a general-purpose solver. The computational experiments are carried out using benchmark and newly created instances.

Suggested Citation

  • Guastaroba, G. & Speranza, M.G., 2012. "Kernel Search: An application to the index tracking problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 54-68.
  • Handle: RePEc:eee:ejores:v:217:y:2012:i:1:p:54-68
    DOI: 10.1016/j.ejor.2011.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711008071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guastaroba, Gianfranco & Mansini, Renata & Speranza, M. Grazia, 2009. "On the effectiveness of scenario generation techniques in single-period portfolio optimization," European Journal of Operational Research, Elsevier, vol. 192(2), pages 500-511, January.
    2. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    3. Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.
    4. N. Meade & J. E. Beasley, 2011. "Detection of momentum effects using an index out-performance strategy," Quantitative Finance, Taylor & Francis Journals, vol. 11(2), pages 313-326.
    5. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    6. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    7. Hirschberger, Markus & Qi, Yue & Steuer, Ralph E., 2010. "Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming," European Journal of Operational Research, Elsevier, vol. 204(3), pages 581-588, August.
    8. Hiroshi Konno & Annista Wijayanayake, 2001. "Minimal Cost Index Tracking Under Nonlinear Transaction Costs And Minimal Transaction Unit Constraints," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(06), pages 939-957.
    9. Dose, Christian & Cincotti, Silvano, 2005. "Clustering of financial time series with application to index and enhanced index tracking portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 145-151.
    10. Canakgoz, N.A. & Beasley, J.E., 2009. "Mixed-integer programming approaches for index tracking and enhanced indexation," European Journal of Operational Research, Elsevier, vol. 196(1), pages 384-399, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianfranco Guastaroba & Renata Mansini & Wlodzimierz Ogryczak & M. Grazia Speranza, 2020. "Enhanced index tracking with CVaR-based ratio measures," Annals of Operations Research, Springer, vol. 292(2), pages 883-931, September.
    2. Guastaroba, G. & Mansini, R. & Ogryczak, W. & Speranza, M.G., 2016. "Linear programming models based on Omega ratio for the Enhanced Index Tracking Problem," European Journal of Operational Research, Elsevier, vol. 251(3), pages 938-956.
    3. Yu Zheng & Bowei Chen & Timothy M. Hospedales & Yongxin Yang, 2019. "Index Tracking with Cardinality Constraints: A Stochastic Neural Networks Approach," Papers 1911.05052, arXiv.org, revised Nov 2019.
    4. Renato Bruni & Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "No arbitrage and a linear portfolio selection model," Economics Bulletin, AccessEcon, vol. 33(2), pages 1247-1258.
    5. Strub, O. & Baumann, P., 2018. "Optimal construction and rebalancing of index-tracking portfolios," European Journal of Operational Research, Elsevier, vol. 264(1), pages 370-387.
    6. Renato Bruni & Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2012. "A New Lp Model For Enhanced Indexation," Departmental Working Papers of Economics - University 'Roma Tre' 0168, Department of Economics - University Roma Tre.
    7. Yu Zheng & Timothy M. Hospedales & Yongxin Yang, 2018. "Diversity and Sparsity: A New Perspective on Index Tracking," Papers 1809.01989, arXiv.org, revised Feb 2020.
    8. Hoai An Le Thi & Mahdi Moeini, 2014. "Long-Short Portfolio Optimization Under Cardinality Constraints by Difference of Convex Functions Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 199-224, April.
    9. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.
    10. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    11. Gnägi, M. & Strub, O., 2020. "Tracking and outperforming large stock-market indices," Omega, Elsevier, vol. 90(C).
    12. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    13. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    14. Li, Helong & Huang, Qin & Wu, Baiyi, 2021. "Improving the naive diversification: An enhanced indexation approach," Finance Research Letters, Elsevier, vol. 39(C).
    15. Zhiping Chen & Xinkai Zhuang & Jia Liu, 2019. "A Sustainability-Oriented Enhanced Indexation Model with Regime Switching and Cardinality Constraint," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    16. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    17. Fengmin Xu & Meihua Wang & Yu-Hong Dai & Dachuan Xu, 2018. "A sparse enhanced indexation model with chance and cardinality constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 5-25, January.
    18. Li, Qian & Bao, Liang, 2014. "Enhanced index tracking with multiple time-scale analysis," Economic Modelling, Elsevier, vol. 39(C), pages 282-292.
    19. Anubha Goel & Damir Filipovi'c & Puneet Pasricha, 2024. "Sparse Portfolio Selection via Topological Data Analysis based Clustering," Papers 2401.16920, arXiv.org.
    20. Leonardo Riegel Sant’Anna & Tiago Pascoal Filomena & Pablo Cristini Guedes & Denis Borenstein, 2017. "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," Annals of Operations Research, Springer, vol. 258(2), pages 849-867, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:217:y:2012:i:1:p:54-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.