IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v137y2005i1p399-40910.1007-s10479-005-2270-7.html
   My bibliography  Save this article

The Egalitarian Solution for Multichoice Games

Author

Listed:
  • Hans Peters
  • Horst Zank

Abstract

In a multichoice game a coalition is characterized by the level at which each player is acting, and to each coalition a real number is assigned. A multichoice solution assigns, for each multichoice game, a numerical value to each possible activity level of each player, intended to measure the contribution of each such level to reaching the grand coalition in which each player is active at the maximal level. The paper focuses on the egalitarian multichoice solution, characterized by the properties of Efficiency, Zero Contribution, Additivity, Anonymity, and Level Symmetry. The egalitarian solution is also shown to satisfy the property of marginalism: it measures the effect of lowering, ceteris paribus, a certain activity level by one. The solution is compared to a multichoice solution studied in Klijn, Slikker, and Zarzuelo (1999). Finally, it is discussed how the formalism of this paper can be applied to the different framework of multi-attribute utilities. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Hans Peters & Horst Zank, 2005. "The Egalitarian Solution for Multichoice Games," Annals of Operations Research, Springer, vol. 137(1), pages 399-409, July.
  • Handle: RePEc:spr:annopr:v:137:y:2005:i:1:p:399-409:10.1007/s10479-005-2270-7
    DOI: 10.1007/s10479-005-2270-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-005-2270-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-005-2270-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H Zank & M Joore & H Peters & L Anteunis & G Boas, 2002. "A New Index for the Evaluation of Health States and Health Programs," Economics Discussion Paper Series 0210, Economics, The University of Manchester.
    2. Moulin, Herve, 1995. "On Additive Methods to Share Joint Costs," Mathematical Social Sciences, Elsevier, vol. 30(1), pages 98-99, August.
    3. Einy, Ezra, 1988. "The shapley value on some lattices of monotonic games," Mathematical Social Sciences, Elsevier, vol. 15(1), pages 1-10, February.
    4. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2017. "Axiomatization of an importance index for Generalized Additive Independence models," Post-Print halshs-01659796, HAL.
    2. GRABISCH, Michel & LABREUCHE, Christophe & RIDAOUI, Mustapha, 2019. "On importance indices in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 277(1), pages 269-283.
    3. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    4. Yu-Hsien Liao, 2012. "Converse consistent enlargements of the unit-level-core of the multi-choice games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 743-753, December.
    5. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    6. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    7. Michael Jones & Jennifer Wilson, 2010. "Multilinear extensions and values for multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(1), pages 145-169, August.
    8. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Multi-Choice Total Clan Games : Characterizations and Solution Concepts," Other publications TiSEM 31aee267-f432-46c8-b078-1, Tilburg University, School of Economics and Management.
    9. Hsiao, Chih-Ru & Chiou, Wen-Lin, 2009. "Modeling a Multi-Choice Game Based on the Spirit of Equal Job opportunities," MPRA Paper 15285, University Library of Munich, Germany.
    10. Branzei, R. & Tijs, S. & Zarzuelo, J., 2009. "Convex multi-choice games: Characterizations and monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 198(2), pages 571-575, October.
    11. Brânzei, R. & Tijs, S.H. & Zarzuelo, J., 2007. "Convex Multi-Choice Cooperative Games and their Monotonic Allocation Schemes," Discussion Paper 2007-54, Tilburg University, Center for Economic Research.
    12. David Lowing & Kevin Techer, 2021. "Marginalism, Egalitarianism and E ciency in Multi-Choice Games," Working Papers halshs-03334056, HAL.
    13. repec:ebl:ecbull:v:3:y:2008:i:43:p:1-7 is not listed on IDEAS
    14. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Egalitarianism in Multi-Choice Games," Other publications TiSEM bfbd67a5-701f-4be7-a1c9-0, Tilburg University, School of Economics and Management.
    15. Brânzei, R. & Tijs, S.H. & Zarzuelo, J., 2007. "Convex Multi-Choice Cooperative Games and their Monotonic Allocation Schemes," Other publications TiSEM 5549df35-acc3-4890-be43-4, Tilburg University, School of Economics and Management.
    16. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Multi-Choice Total Clan Games : Characterizations and Solution Concepts," Discussion Paper 2007-77, Tilburg University, Center for Economic Research.
    17. Fanyong Meng & Qiang Zhang & Xiaohong Chen, 2017. "Fuzzy Multichoice Games with Fuzzy Characteristic Functions," Group Decision and Negotiation, Springer, vol. 26(3), pages 565-595, May.
    18. M. Albizuri, 2009. "The multichoice coalition value," Annals of Operations Research, Springer, vol. 172(1), pages 363-374, November.
    19. Hwang, Yan-An & Liao, Yu-Hsien, 2008. "Potential approach and characterizations of a Shapley value in multi-choice games," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 321-335, November.
    20. David Lowing & Makoto Yokoo, 2023. "Sharing values for multi-choice games: an axiomatic approach," Working Papers hal-04018735, HAL.
    21. Hsiao, Chih-Ru, 2011. "A Review on Liao’s Dissertation Entitled “The Solutions on Multi-choice Games” and Related Publications," MPRA Paper 30260, University Library of Munich, Germany.
    22. Yan-An Hwang & Yu-Hsien Liao, 2008. "The solutions for multi-choice games: TU games approach," Economics Bulletin, AccessEcon, vol. 3(43), pages 1-7.
    23. Lee, Joosung & Driessen, Theo S.H., 2012. "Sequentially two-leveled egalitarianism for TU games: Characterization and application," European Journal of Operational Research, Elsevier, vol. 220(3), pages 736-743.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peters Hans & Zank H., 1999. "A Class of Methods for Evaluating Multiattribute Utilities," Research Memorandum 034, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    2. Michel Grabisch, 2015. "Fuzzy Measures and Integrals: Recent Developments," Post-Print hal-01302377, HAL.
    3. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    4. Yves Sprumont, 2010. "An Axiomatization of the Serial Cost-Sharing Method," Econometrica, Econometric Society, vol. 78(5), pages 1711-1748, September.
    5. Grabisch, Michel & Sudhölter, Peter, 2018. "On a class of vertices of the core," Games and Economic Behavior, Elsevier, vol. 108(C), pages 541-557.
    6. Grabisch, Michel & Sudhölter, Peter, 2014. "On the restricted cores and the bounded core of games on distributive lattices," European Journal of Operational Research, Elsevier, vol. 235(3), pages 709-717.
    7. J. Bilbao & A. Jiménez-Losada & E. Lebrón & S. Tijs, 2002. "Theτ-value for games on matroids," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 67-81, June.
    8. Lange, Fabien & Grabisch, Michel, 2009. "Values on regular games under Kirchhoff's laws," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 322-340, November.
    9. Hervé Moulin & Yves Sprumont, 2007. "Fair allocation of production externalities : recent results," Revue d'économie politique, Dalloz, vol. 117(1), pages 7-36.
    10. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
    11. Derks, Jean & Peters, Hans, 1997. "Consistent restricted Shapley values," Mathematical Social Sciences, Elsevier, vol. 33(1), pages 75-91, February.
    12. Michel Grabisch, 2016. "Remarkable polyhedra related to set functions, games and capacities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 301-326, July.
    13. Michel Grabisch & Peter Sudhölter, 2012. "The bounded core for games with precedence constraints," Annals of Operations Research, Springer, vol. 201(1), pages 251-264, December.
    14. Lei Li & Xueliang Li, 2011. "The covering values for acyclic digraph games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 697-718, November.
    15. Bilbao, J. M., 1998. "Axioms for the Shapley value on convex geometries," European Journal of Operational Research, Elsevier, vol. 110(2), pages 368-376, October.
    16. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    17. Koshevoy, G.A. & Suzuki, T. & Talman, A.J.J., 2013. "Solutions For Games With General Coalitional Structure And Choice Sets," Discussion Paper 2013-012, Tilburg University, Center for Economic Research.
    18. Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2022. "Variable importance without impossible data," Papers 2205.15750, arXiv.org, revised Apr 2023.
    19. Michel Grabisch & Fabien Lange, 2007. "Games on lattices, multichoice games and the shapley value: a new approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 153-167, February.
    20. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Tvede, Mich & Østerdal, Lars Peter, 2017. "Sharing the proceeds from a hierarchical venture," Games and Economic Behavior, Elsevier, vol. 102(C), pages 98-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:137:y:2005:i:1:p:399-409:10.1007/s10479-005-2270-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.