IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v180y2010i1p63-10310.1007-s10479-008-0493-0.html
   My bibliography  Save this article

Multi-objective and prioritized berth allocation in container ports

Author

Listed:
  • C. Cheong
  • K. Tan
  • D. Liu
  • C. Lin

Abstract

This paper considers a berth allocation problem (BAP) which requires the determination of exact berthing times and positions of incoming ships in a container port. The problem is solved by optimizing the berth schedule so as to minimize concurrently the three objectives of makespan, waiting time, and degree of deviation from a predetermined priority schedule. These objectives represent the interests of both port and ship operators. Unlike most existing approaches in the literature which are single-objective-based, a multi-objective evolutionary algorithm (MOEA) that incorporates the concept of Pareto optimality is proposed for solving the multi-objective BAP. The MOEA is equipped with three primary features which are specifically designed to target the optimization of the three objectives. The features include a local search heuristic, a hybrid solution decoding scheme, and an optimal berth insertion procedure. The effects that each of these features has on the quality of berth schedules are studied. Copyright Springer Science+Business Media, LLC 2010

Suggested Citation

  • C. Cheong & K. Tan & D. Liu & C. Lin, 2010. "Multi-objective and prioritized berth allocation in container ports," Annals of Operations Research, Springer, vol. 180(1), pages 63-103, November.
  • Handle: RePEc:spr:annopr:v:180:y:2010:i:1:p:63-103:10.1007/s10479-008-0493-0
    DOI: 10.1007/s10479-008-0493-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0493-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0493-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kap Hwan & Moon, Kyung Chan, 2003. "Berth scheduling by simulated annealing," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 541-560, July.
    2. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    3. Tan, K.C. & Cheong, C.Y. & Goh, C.K., 2007. "Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation," European Journal of Operational Research, Elsevier, vol. 177(2), pages 813-839, March.
    4. Nishimura, Etsuko & Imai, Akio & Papadimitriou, Stratos, 2001. "Berth allocation planning in the public berth system by genetic algorithms," European Journal of Operational Research, Elsevier, vol. 131(2), pages 282-292, June.
    5. Imai, Akio & Sun, Xin & Nishimura, Etsuko & Papadimitriou, Stratos, 2005. "Berth allocation in a container port: using a continuous location space approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 199-221, March.
    6. Gerald G. Brown & Siriphong Lawphongpanich & Katie Podolak Thurman, 1994. "Optimizing ship berthing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 1-15, February.
    7. Gerald G. Brown & Kelly J. Cormican & Siriphong Lawphongpanich & Daniel B. Widdis, 1997. "Optimizing submarine berthing with a persistence incentive," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(4), pages 301-318, June.
    8. Imai, Akio & Nishimura, Etsuko & Hattori, Masahiro & Papadimitriou, Stratos, 2007. "Berth allocation at indented berths for mega-containerships," European Journal of Operational Research, Elsevier, vol. 179(2), pages 579-593, June.
    9. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2003. "Berth allocation with service priority," Transportation Research Part B: Methodological, Elsevier, vol. 37(5), pages 437-457, June.
    10. K T Park & K H Kim, 2002. "Berth scheduling for container terminals by using a sub-gradient optimization technique," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 1054-1062, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lalla-Ruiz, Eduardo & Expósito-Izquierdo, Christopher & Melián-Batista, Belén & Moreno-Vega, J. Marcos, 2016. "A Set-Partitioning-based model for the Berth Allocation Problem under Time-Dependent Limitations," European Journal of Operational Research, Elsevier, vol. 250(3), pages 1001-1012.
    2. Arijit De & Saurabh Pratap & Akhilesh Kumar & M. K. Tiwari, 2020. "A hybrid dynamic berth allocation planning problem with fuel costs considerations for container terminal port using chemical reaction optimization approach," Annals of Operations Research, Springer, vol. 290(1), pages 783-811, July.
    3. Abdellah Salhi & Ghazwan Alsoufi & Xinan Yang, 2019. "An evolutionary approach to a combined mixed integer programming model of seaside operations as arise in container ports," Annals of Operations Research, Springer, vol. 272(1), pages 69-98, January.
    4. Umang, Nitish & Bierlaire, Michel & Vacca, Ilaria, 2013. "Exact and heuristic methods to solve the berth allocation problem in bulk ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 14-31.
    5. Shangyao Yan & Chung-Cheng Lu & Jun-Hsiao Hsieh & Han-Chun Lin, 2019. "A Dynamic and Flexible Berth Allocation Model with Stochastic Vessel Arrival Times," Networks and Spatial Economics, Springer, vol. 19(3), pages 903-927, September.
    6. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    7. H. L. Ma & S. H. Chung & H. K. Chan & Li Cui, 2019. "An integrated model for berth and yard planning in container terminals with multi-continuous berth layout," Annals of Operations Research, Springer, vol. 273(1), pages 409-431, February.
    8. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    9. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2012. "Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS," European Journal of Operational Research, Elsevier, vol. 218(3), pages 735-746.
    10. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2013. "Marine container terminal configurations for efficient handling of mega-containerships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 141-158.
    11. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    12. Xu, Jiuping & Song, Xiaoling & Wu, Yimin & Zeng, Ziqiang, 2015. "GIS-modelling based coal-fired power plant site identification and selection," Applied Energy, Elsevier, vol. 159(C), pages 520-539.
    13. Adrián Ramírez-Nafarrate & Rosa G. González-Ramírez & Neale R. Smith & Roberto Guerra-Olivares & Stefan Voß, 2017. "Impact on yard efficiency of a truck appointment system for a port terminal," Annals of Operations Research, Springer, vol. 258(2), pages 195-216, November.
    14. Xu, Dongsheng & Li, Chung-Lun & Leung, Joseph Y.-T., 2012. "Berth allocation with time-dependent physical limitations on vessels," European Journal of Operational Research, Elsevier, vol. 216(1), pages 47-56.
    15. Lotte Berghman & Roel Leus & Frits Spieksma, 2014. "Optimal solutions for a dock assignment problem with trailer transportation," Annals of Operations Research, Springer, vol. 213(1), pages 3-25, February.
    16. Song, Xiaoling & Xu, Jiuping & Zhang, Zhe & Shen, Charles & Xie, Heping & Peña-Mora, Feniosky & Wu, Yimin, 2017. "Reconciling strategy towards construction site selection-layout for coal-fired power plants," Applied Energy, Elsevier, vol. 204(C), pages 846-865.
    17. Eduardo Lalla-Ruiz & Stefan Voß & Christopher Expósito-Izquierdo & Belén Melián-Batista & J. Marcos Moreno-Vega, 2017. "A POPMUSIC-based approach for the berth allocation problem under time-dependent limitations," Annals of Operations Research, Springer, vol. 253(2), pages 871-897, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    2. Xu, Dongsheng & Li, Chung-Lun & Leung, Joseph Y.-T., 2012. "Berth allocation with time-dependent physical limitations on vessels," European Journal of Operational Research, Elsevier, vol. 216(1), pages 47-56.
    3. Umang, Nitish & Bierlaire, Michel & Vacca, Ilaria, 2013. "Exact and heuristic methods to solve the berth allocation problem in bulk ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 14-31.
    4. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2013. "Marine container terminal configurations for efficient handling of mega-containerships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 141-158.
    5. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    6. Changchun Liu & Xi Xiang & Canrong Zhang & Li Zheng, 2016. "A Decision Model for Berth Allocation Under Uncertainty Considering Service Level Using an Adaptive Differential Evolution Algorithm," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-28, December.
    7. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    8. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    9. Changchun Liu & Xi Xiang & Li Zheng, 2017. "Two decision models for berth allocation problem under uncertainty considering service level," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 312-344, December.
    10. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
    11. Ya Xu & Qiushuang Chen & Xiongwen Quan, 2012. "Robust berth scheduling with uncertain vessel delay and handling time," Annals of Operations Research, Springer, vol. 192(1), pages 123-140, January.
    12. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    13. Imai, Akio & Nishimura, Etsuko & Hattori, Masahiro & Papadimitriou, Stratos, 2007. "Berth allocation at indented berths for mega-containerships," European Journal of Operational Research, Elsevier, vol. 179(2), pages 579-593, June.
    14. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    15. Shangyao Yan & Chung-Cheng Lu & Jun-Hsiao Hsieh & Han-Chun Lin, 2019. "A Dynamic and Flexible Berth Allocation Model with Stochastic Vessel Arrival Times," Networks and Spatial Economics, Springer, vol. 19(3), pages 903-927, September.
    16. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    17. Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    18. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    19. Hansen, Pierre & Oguz, Ceyda & Mladenovic, Nenad, 2008. "Variable neighborhood search for minimum cost berth allocation," European Journal of Operational Research, Elsevier, vol. 191(3), pages 636-649, December.
    20. Shih-Wei Lin & Ching-Jung Ting & Kun-Chih Wu, 2018. "Simulated annealing with different vessel assignment strategies for the continuous berth allocation problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 740-763, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:180:y:2010:i:1:p:63-103:10.1007/s10479-008-0493-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.