IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v35y2001i4p401-417.html
   My bibliography  Save this article

The dynamic berth allocation problem for a container port

Author

Listed:
  • Imai, Akio
  • Nishimura, Etsuko
  • Papadimitriou, Stratos

Abstract

This paper addresses the problem of determining a dynamic berth assignment to ships in the public berth system. While the public berth system may not be suitable for most container ports in major countries, it is desired for higher cost-effectiveness in Japan's ports. The berth allocation to calling ships is a key factor for efficient public berthing. However, it is not calculated in polynomially-bounded time. To obtain a good solution with considerably small computational effort, we developed a heuristic procedure based on the Lagrangian relaxation of the original problem. We conducted a large amount of computational experiments which showed that the proposed algorithm is adaptable to real world applications.

Suggested Citation

  • Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
  • Handle: RePEc:eee:transb:v:35:y:2001:i:4:p:401-417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(99)00057-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James C. Bean & John R. Birge & John Mittenthal & Charles E. Noon, 1991. "Matchup Scheduling with Multiple Resources, Release Dates and Disruptions," Operations Research, INFORMS, vol. 39(3), pages 470-483, June.
    2. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    3. Bazaraa, Mokhtar S. & Goode, Jamie J., 1979. "A survey of various tactics for generating Lagrangian multipliers in the context of Lagrangian duality," European Journal of Operational Research, Elsevier, vol. 3(4), pages 322-338, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imai, Akio & Nishimura, Etsuko & Current, John, 2007. "A Lagrangian relaxation-based heuristic for the vehicle routing with full container load," European Journal of Operational Research, Elsevier, vol. 176(1), pages 87-105, January.
    2. Rizk, Nafee & Martel, Alain & Ramudhin, Amar, 2006. "A Lagrangean relaxation algorithm for multi-item lot-sizing problems with joint piecewise linear resource costs," International Journal of Production Economics, Elsevier, vol. 102(2), pages 344-357, August.
    3. Amiri, Ali, 2005. "The selection and scheduling of telecommunication calls with time windows," European Journal of Operational Research, Elsevier, vol. 167(1), pages 243-256, November.
    4. P N Ram Kumar & T T Narendran, 2011. "On the usage of Lagrangean Relaxation for the convoy movement problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 722-728, April.
    5. Hasan Pirkul & David A. Schilling, 1998. "An Efficient Procedure for Designing Single Allocation Hub and Spoke Systems," Management Science, INFORMS, vol. 44(12-Part-2), pages 235-242, December.
    6. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    7. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    8. M Diaby & A L Nsakanda, 2006. "Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1100-1112, September.
    9. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    10. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    11. S Bilgin & M Azizoǧlu, 2006. "Capacity and tool allocation problem in flexible manufacturing systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 670-681, June.
    12. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    13. Peter Francis & Karen Smilowitz & Michal Tzur, 2006. "The Period Vehicle Routing Problem with Service Choice," Transportation Science, INFORMS, vol. 40(4), pages 439-454, November.
    14. Park, Moon-Won & Kim, Yeong-Dae, 2000. "A branch and bound algorithm for a production scheduling problem in an assembly system under due date constraints," European Journal of Operational Research, Elsevier, vol. 123(3), pages 504-518, June.
    15. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    16. Jenny Carolina Saldana Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," Documentos CEDE 8735, Universidad de los Andes, Facultad de Economía, CEDE.
    17. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    18. S. David Wu & Eui-Seok Byeon & Robert H. Storer, 1999. "A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness," Operations Research, INFORMS, vol. 47(1), pages 113-124, February.
    19. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    20. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:35:y:2001:i:4:p:401-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.