IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v218y2012i3p735-746.html
   My bibliography  Save this article

Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS

Author

Listed:
  • Lin, Yi-Kuei
  • Yeh, Cheng-Ta

Abstract

Network reliability is a performance indicator of computer/communication networks to measure the quality level. However, it is costly to improve or maximize network reliability. This study attempts to maximize network reliability with minimal cost by finding the optimal transmission line assignment. These two conflicting objectives frustrate decision makers. In this study, a set of transmission lines is ready to be assigned to the computer network, and the computer network associated with any transmission line assignment is regarded as a stochastic computer network (SCN) because of the multistate transmission lines. Therefore, network reliability means the probability to transmit a specified amount of data successfully through the SCN. To solve this multiple objectives programming problem, this study proposes an approach integrating Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). NSGA-II searches for the Pareto set where network reliability is evaluated in terms of minimal paths and Recursive Sum of Disjoint Products (RSDP). Subsequently, TOPSIS determines the best compromise solution. Several real computer networks serve to demonstrate the proposed approach.

Suggested Citation

  • Lin, Yi-Kuei & Yeh, Cheng-Ta, 2012. "Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS," European Journal of Operational Research, Elsevier, vol. 218(3), pages 735-746.
  • Handle: RePEc:eee:ejores:v:218:y:2012:i:3:p:735-746
    DOI: 10.1016/j.ejor.2011.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171101037X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Cheong & K. Tan & D. Liu & C. Lin, 2010. "Multi-objective and prioritized berth allocation in container ports," Annals of Operations Research, Springer, vol. 180(1), pages 63-103, November.
    2. Lin, Yi-Kuei, 2007. "On a multicommodity stochastic-flow network with unreliable nodes subject to budget constraint," European Journal of Operational Research, Elsevier, vol. 176(1), pages 347-360, January.
    3. Lin, Yi-Kuei, 2010. "Calculation of minimal capacity vectors through k minimal paths under budget and time constraints," European Journal of Operational Research, Elsevier, vol. 200(1), pages 160-169, January.
    4. Tan, K.C. & Goh, C.K. & Yang, Y.J. & Lee, T.H., 2006. "Evolving better population distribution and exploration in evolutionary multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 171(2), pages 463-495, June.
    5. Ramirez-Marquez, José Emmanuel & Rocco S., Claudio M., 2009. "Stochastic network interdiction optimization via capacitated network reliability modeling and probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 913-921.
    6. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    7. C. West Churchman & Russell L. Ackoff, 1954. "An Approximate Measure of Value," Operations Research, INFORMS, vol. 2(2), pages 172-187, May.
    8. Marshall L. Fisher & R. Jaikumar & Luk N. Van Wassenhove, 1986. "A Multiplier Adjustment Method for the Generalized Assignment Problem," Management Science, INFORMS, vol. 32(9), pages 1095-1103, September.
    9. Ramirez-Marquez, Jose E. & Rocco S, Claudio M. & Levitin, Gregory, 2009. "Optimal protection of general source–sink networks via evolutionary techniques," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1676-1684.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Maozhu & Song, Lijun & Wang, Yanan & Zeng, Yucheng, 2018. "Longitudinal cooperative robust optimization model for sustainable supply chain management," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 95-105.
    2. Zhou, Yifan & Liu, Libo & Li, Hao, 2022. "Reliability estimation and optimisation of multistate flow networks using a conditional Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Yu, Shiwei & Zheng, Shuhong & Gao, Shiwei & Yang, Juan, 2017. "A multi-objective decision model for investment in energy savings and emission reductions in coal mining," European Journal of Operational Research, Elsevier, vol. 260(1), pages 335-347.
    4. McCarter, Matthew & Barker, Kash & Johansson, Jonas & Ramirez-Marquez, Jose E., 2018. "A bi-objective formulation for robust defense strategies in multi-commodity networks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 154-161.
    5. Faghih-Roohi, Shahrzad & Akcay, Alp & Zhang, Yingqian & Shekarian, Ehsan & de Jong, Eelco, 2020. "A group risk assessment approach for the selection of pharmaceutical product shipping lanes," International Journal of Production Economics, Elsevier, vol. 229(C).
    6. Yeh, Cheng-Ta, 2019. "An improved NSGA2 to solve a bi-objective optimization problem of multi-state electronic transaction network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Huang, Cheng-Hao & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2023. "Network reliability prediction for random capacitated-flow networks via an artificial neural network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Xu, Jiuping & Song, Xiaoling & Wu, Yimin & Zeng, Ziqiang, 2015. "GIS-modelling based coal-fired power plant site identification and selection," Applied Energy, Elsevier, vol. 159(C), pages 520-539.
    9. Yu, Yang & Tang, Jiafu & Gong, Jun & Yin, Yong & Kaku, Ikou, 2014. "Mathematical analysis and solutions for multi-objective line-cell conversion problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 774-786.
    10. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    11. Yu Guo & Yanqing Ye & Qingqing Yang & Kewei Yang, 2019. "A Multi-Objective INLP Model of Sustainable Resource Allocation for Long-Range Maritime Search and Rescue," Sustainability, MDPI, vol. 11(3), pages 1-25, February.
    12. Benjie Li & Hualin Zheng & Xiao Yang & Liang Guo & Binglin Li, 2020. "Energy Optimization for Motorized Spindle System of Machine Tools under Minimum Thermal Effects and Maximum Productivity Constraints," Energies, MDPI, vol. 13(22), pages 1-17, November.
    13. Cheng-Ta Yeh & Louis Cheng-Lu Yeng & Yi-Kuei Lin & Yu-Lun Chao, 2024. "A hybrid method to solve reliability-cost-oriented bi-objective machine configuration problem for a flow shop system," Annals of Operations Research, Springer, vol. 340(1), pages 643-669, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2012. "Determining the optimal double-component assignment for a stochastic computer network," Omega, Elsevier, vol. 40(1), pages 120-130, January.
    2. Zhu, Huaxing & Zhang, Chi, 2019. "Expanding a complex networked system for enhancing its reliability evaluated by a new efficient approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 205-220.
    3. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    4. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    5. Levitin, G. & Gertsbakh, I. & Shpungin, Y., 2011. "Evaluating the damage associated with intentional network disintegration," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 433-439.
    6. Liberatore, Federico & Scaparra, Maria P. & Daskin, Mark S., 2012. "Hedging against disruptions with ripple effects in location analysis," Omega, Elsevier, vol. 40(1), pages 21-30, January.
    7. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    8. Levitin, G. & Gertsbakh, I. & Shpungin, Y., 2013. "Evaluating the damage associated with intentional supply deprivation in multi-commodity network," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 11-17.
    9. Yeh, Cheng-Ta, 2019. "An improved NSGA2 to solve a bi-objective optimization problem of multi-state electronic transaction network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Levitin, Gregory, 2011. "Optimal network protection against diverse interdictor strategies," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 374-382.
    11. Guozhen Xiong & Chi Zhang & Fei Zhou, 2017. "A robust reliability redundancy allocation problem under abnormal external failures guided by a new importance measure," Journal of Risk and Reliability, , vol. 231(2), pages 180-199, April.
    12. Yeh, Cheng-Ta, 2020. "A hybrid approach to solve a bi-objective optimization problem of a capacitated-flow network with a time factor," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Yaghlane, Asma Ben & Azaiez, M. Naceur & Mrad, Mehdi, 2019. "System survivability in the context of interdiction networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 362-371.
    14. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    15. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    16. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    17. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    18. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    19. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    20. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:218:y:2012:i:3:p:735-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.