IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v30y2024i4d10.1007_s10985-024-09634-x.html
   My bibliography  Save this article

Unifying mortality forecasting model: an investigation of the COM–Poisson distribution in the GAS model for improved projections

Author

Listed:
  • Suryo Adi Rakhmawan

    (BPS-Statistics Indonesia)

  • Tahir Mahmood

    (University of the West of Scotland)

  • Nasir Abbas

    (King Fahd University of Petroleum and Minerals)

  • Muhammad Riaz

    (King Fahd University of Petroleum and Minerals)

Abstract

Forecasting mortality rates is crucial for evaluating life insurance company solvency, especially amid disruptions caused by phenomena like COVID-19. The Lee–Carter model is commonly employed in mortality modelling; however, extensions that can encompass count data with diverse distributions, such as the Generalized Autoregressive Score (GAS) model utilizing the COM–Poisson distribution, exhibit potential for enhancing time-to-event forecasting accuracy. Using mortality data from 29 countries, this research evaluates various distributions and determines that the COM–Poisson model surpasses the Poisson, binomial, and negative binomial distributions in forecasting mortality rates. The one-step forecasting capability of the GAS model offers distinct advantages, while the COM–Poisson distribution demonstrates enhanced flexibility and versatility by accommodating various distributions, including Poisson and negative binomial. Ultimately, the study determines that the COM–Poisson GAS model is an effective instrument for examining time series data on mortality rates, particularly when facing time-varying parameters and non-conventional data distributions.

Suggested Citation

  • Suryo Adi Rakhmawan & Tahir Mahmood & Nasir Abbas & Muhammad Riaz, 2024. "Unifying mortality forecasting model: an investigation of the COM–Poisson distribution in the GAS model for improved projections," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 800-826, October.
  • Handle: RePEc:spr:lifeda:v:30:y:2024:i:4:d:10.1007_s10985-024-09634-x
    DOI: 10.1007/s10985-024-09634-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-024-09634-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-024-09634-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert E. Gaunt & Satish Iyengar & Adri B. Olde Daalhuis & Burcin Simsek, 2019. "An asymptotic expansion for the normalizing constant of the Conway–Maxwell–Poisson distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 163-180, February.
    2. Peters, Gareth W. & Shevchenko, Pavel V. & Wüthrich, Mario V., 2009. "Model Uncertainty in Claims Reserving within Tweedie's Compound Poisson Models," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 1-33, May.
    3. Giacometti, Rosella & Bertocchi, Marida & Rachev, Svetlozar T. & Fabozzi, Frank J., 2012. "A comparison of the Lee–Carter model and AR–ARCH model for forecasting mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 85-93.
    4. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    5. Jackie Li, 2013. "A Poisson common factor model for projecting mortality and life expectancy jointly for females and males," Population Studies, Taylor & Francis Journals, vol. 67(1), pages 111-126, March.
    6. Suryo Adi Rakhmawan & M. Hafidz Omar & Muhammad Riaz & Nasir Abbas, 2023. "Hotelling T 2 Control Chart for Detecting Changes in Mortality Models Based on Machine-Learning Decision Tree," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
    7. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    8. Jackie Li & David Pitt & Han Li, 2022. "Dispersion modelling of mortality for both sexes with Tweedie distributions," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2022(4), pages 356-374, April.
    9. Jason Hilton & Erengul Dodd & Jonathan J. Forster & Peter W. F. Smith, 2019. "Projecting UK mortality by using Bayesian generalized additive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(1), pages 29-49, January.
    10. Renshaw, A.E. & Haberman, S., 2008. "On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 797-816, April.
    11. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    12. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Model uncertainty in claims reserving within Tweedie's compound Poisson models," Papers 0904.1483, arXiv.org.
    13. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    14. Zhou, Jin & Li, Haiqi & Zhong, Wanling, 2021. "A modified Diebold–Mariano test for equal forecast accuracy with clustered dependence," Economics Letters, Elsevier, vol. 207(C).
    15. Leon, Angel & Rubio, Gonzalo & Serna, Gregorio, 2005. "Autoregresive conditional volatility, skewness and kurtosis," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(4-5), pages 599-618, September.
    16. Marie Böhnstedt & Jutta Gampe & Hein Putter, 2021. "Information measures and design issues in the study of mortality deceleration: findings for the gamma-Gompertz model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 333-356, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Suryo Adi Rakhmawan & Tahir Mahmood & Nasir Abbas, 2025. "Deep learning-based mortality surveillance: implications for healthcare policy and practice," Journal of Population Research, Springer, vol. 42(1), pages 1-25, March.
    3. Jackie Li & Leonie Tickle & Nick Parr, 2016. "A multi-population evaluation of the Poisson common factor model for projecting mortality jointly for both sexes," Journal of Population Research, Springer, vol. 33(4), pages 333-360, December.
    4. Yang, Bowen & Li, Jackie & Balasooriya, Uditha, 2015. "Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 16-27.
    5. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    6. Jose Garrido & Xavier Milhaud & Anani Olympio & Max Popp, 2024. "Climate Risk and its Impact on Insurance [Risque climatique et impact en assurance]," Post-Print hal-04684634, HAL.
    7. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    8. Peters, Gareth W. & Shevchenko, Pavel V. & Young, Mark & Yip, Wendy, 2011. "Analytic loss distributional approach models for operational risk from the α-stable doubly stochastic compound processes and implications for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 565-579.
    9. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    10. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    11. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    12. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    13. Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
    14. Tickle Leonie & Booth Heather, 2014. "The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 8(2), pages 259-292, July.
    15. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    16. Jens Robben & Katrien Antonio & Sander Devriendt, 2022. "Assessing the Impact of the COVID-19 Shock on a Stochastic Multi-Population Mortality Model," Risks, MDPI, vol. 10(2), pages 1-33, January.
    17. Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.
    18. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    19. Doukhan, P. & Pommeret, D. & Rynkiewicz, J. & Salhi, Y., 2017. "A class of random field memory models for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 97-110.
    20. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:30:y:2024:i:4:d:10.1007_s10985-024-09634-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.