IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v64y2012i5p881-910.html
   My bibliography  Save this article

An optimal modification of the LIML estimation for many instruments and persistent heteroscedasticity

Author

Listed:
  • Naoto Kunitomo

Abstract

We consider the estimation of coefficients of a structural equation with many instrumental variables in a simultaneous equation system. It is mathematically equivalent to the estimating equations estimation or a reduced rank regression in the statistical multivariate linear models when the number of restrictions or the dimension of estimating equations increases with the sample size. As a semi-parametric method, we propose a class of modifications of the limited information maximum likelihood (LIML) estimator to improve its asymptotic properties as well as the small sample properties for many instruments and persistent heteroscedasticity. We show that an asymptotically optimal modification of the LIML estimator, which is called AOM-LIML, improves the LIML estimator and other estimation methods. We give a set of sufficient conditions for an asymptotic optimality when the number of instruments or the dimension of the estimating equations is large with persistent heteroscedasticity including a case of many weak instruments. Copyright The Institute of Statistical Mathematics, Tokyo 2012

Suggested Citation

  • Naoto Kunitomo, 2012. "An optimal modification of the LIML estimation for many instruments and persistent heteroscedasticity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 881-910, October.
  • Handle: RePEc:spr:aistmt:v:64:y:2012:i:5:p:881-910
    DOI: 10.1007/s10463-011-0336-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-011-0336-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-011-0336-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2006. "A New Light from Old Wisdoms : Alternative Estimation Methods of Simultaneous Equations with Possibly Many Instruments," CIRJE F-Series CIRJE-F-399, CIRJE, Faculty of Economics, University of Tokyo.
    2. Kunitomo, Naoto & Matsushita, Yukitoshi, 2009. "Asymptotic expansions and higher order properties of semi-parametric estimators in a system of simultaneous equations," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1727-1751, September.
    3. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    4. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    5. Anderson, T W & Kunitomo, Naoto & Sawa, Takamitsu, 1982. "Evaluation of the Distribution Function of the Limited Information Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 50(4), pages 1009-1027, July.
    6. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    7. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On the Asymptotic Optimality of the LIML Estimator with Possibly Many Instruments," CIRJE F-Series CIRJE-F-542, CIRJE, Faculty of Economics, University of Tokyo.
    8. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    9. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    10. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    11. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    12. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On Finite Sample Properties of Alternative Estimators of Coefficients in a Structural Equation with Many Instruments," CIRJE F-Series CIRJE-F-577, CIRJE, Faculty of Economics, University of Tokyo.
    13. Morimune, Kimio, 1983. "Approximate Distributions of k-Class Estimators When the Degree of Overidentifiability Is Large Compared with the Sample Size," Econometrica, Econometric Society, vol. 51(3), pages 821-841, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    2. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    3. Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.
    4. Kentaro Akashi & Naoto Kunitomo, 2015. "The limited information maximum likelihood approach to dynamic panel structural equation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 39-73, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yukitoshi Matsushita & Taisuke Otsu, 2020. "Second-order refinements for t-ratios with many instruments," STICERD - Econometrics Paper Series 612, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    3. Naoto Kunitomo, 2008. "An Optimal Modification of the LIML Estimation for Many Instruments and Persistent Heteroscedasticity," CIRJE F-Series CIRJE-F-576, CIRJE, Faculty of Economics, University of Tokyo.
    4. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    5. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    6. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    7. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    8. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    9. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    10. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    11. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    12. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    13. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
    14. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2011. "On finite sample properties of alternative estimators of coefficients in a structural equation with many instruments," Journal of Econometrics, Elsevier, vol. 165(1), pages 58-69.
    15. Matsushita, Yukitoshi & Otsu, Taisuke, 2023. "Second-order refinements for t-ratios with many instruments," LSE Research Online Documents on Economics 111065, London School of Economics and Political Science, LSE Library.
    16. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    17. Marine Carrasco & Guy Tchuente, 2016. "Efficient Estimation with Many Weak Instruments Using Regularization Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1609-1637, December.
    18. Calhoun, Gray, 2011. "Hypothesis testing in linear regression when k/n is large," Journal of Econometrics, Elsevier, vol. 165(2), pages 163-174.
    19. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    20. Stanislav Anatolyev, 2013. "Instrumental variables estimation and inference in the presence of many exogenous regressors," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 27-72, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:64:y:2012:i:5:p:881-910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.