IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2008cf576.html
   My bibliography  Save this paper

An Optimal Modification of the LIML Estimation for Many Instruments and Persistent Heteroscedasticity

Author

Listed:
  • Naoto Kunitomo

    (Faculty of Economics, University of Tokyo)

Abstract

We consider the estimation of coefficients of a structural equation with many instrumental variables in a simultaneous equation system. It is mathematically equivalent to an estimating equation estimation or a reduced rank regression in the statistical linear models when the number of restrictions or the dimension increases with the sample size. As a semi- parametric method, we propose a class of modifications of the limited information maximum likelihood (LIML) estimator to improve its asymptotic properties as well as the small sample properties for many instruments and persistent heteroscedasticity. We show that an asymptotically optimal modification of the LIML estimator, which is called AOM-LIML, improves the LIML estimator and other estimation methods. We give a set of sufficient conditions for an asymptotic optimality when the number of instruments or the dimension is large with persistent heteroscedasticity including a case of many weak instruments.

Suggested Citation

  • Naoto Kunitomo, 2008. "An Optimal Modification of the LIML Estimation for Many Instruments and Persistent Heteroscedasticity," CIRJE F-Series CIRJE-F-576, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2008cf576
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2008/2008cf576.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kunitomo, Naoto & Matsushita, Yukitoshi, 2009. "Asymptotic expansions and higher order properties of semi-parametric estimators in a system of simultaneous equations," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1727-1751, September.
    2. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On the Asymptotic Optimality of the LIML Estimator with Possibly Many Instruments," CIRJE F-Series CIRJE-F-542, CIRJE, Faculty of Economics, University of Tokyo.
    3. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    4. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    5. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    6. Morimune, Kimio, 1983. "Approximate Distributions of k-Class Estimators When the Degree of Overidentifiability Is Large Compared with the Sample Size," Econometrica, Econometric Society, vol. 51(3), pages 821-841, May.
    7. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2006. "A New Light from Old Wisdoms : Alternative Estimation Methods of Simultaneous Equations with Possibly Many Instruments," CIRJE F-Series CIRJE-F-399, CIRJE, Faculty of Economics, University of Tokyo.
    8. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On Finite Sample Properties of Alternative Estimators of Coefficients in a Structural Equation with Many Instruments," CIRJE F-Series CIRJE-F-577, CIRJE, Faculty of Economics, University of Tokyo.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naoto Kunitomo, 2012. "An optimal modification of the LIML estimation for many instruments and persistent heteroscedasticity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 881-910, October.
    2. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    3. Yukitoshi Matsushita & Taisuke Otsu, 2020. "Second-order refinements for t-ratios with many instruments," STICERD - Econometrics Paper Series 612, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    5. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    6. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2011. "On finite sample properties of alternative estimators of coefficients in a structural equation with many instruments," Journal of Econometrics, Elsevier, vol. 165(1), pages 58-69.
    7. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    8. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    9. Marine Carrasco & Guy Tchuente, 2016. "Efficient Estimation with Many Weak Instruments Using Regularization Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1609-1637, December.
    10. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On Finite Sample Properties of Alternative Estimators of Coefficients in a Structural Equation with Many Instruments," CIRJE F-Series CIRJE-F-577, CIRJE, Faculty of Economics, University of Tokyo.
    11. Calhoun, Gray, 2011. "Hypothesis testing in linear regression when k/n is large," Journal of Econometrics, Elsevier, vol. 165(2), pages 163-174.
    12. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    13. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
    14. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    15. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    16. Stanislav Anatolyev, 2013. "Instrumental variables estimation and inference in the presence of many exogenous regressors," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 27-72, February.
    17. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    18. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    19. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    20. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2008cf576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.