IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v67y2015i1p39-73.html
   My bibliography  Save this article

The limited information maximum likelihood approach to dynamic panel structural equation models

Author

Listed:
  • Kentaro Akashi
  • Naoto Kunitomo

Abstract

We develop the panel-limited information maximum likelihood approach for estimating dynamic panel structural equation models. When there are dynamic effects and endogenous variables with individual effects at the same time, the LIML method for the filtered data does give not only a consistent estimator and asymptotic normality, but also attains the asymptotic bound when the number of orthogonal conditions is large. Our formulation includes Alvarez and Arellano (Econometrica 71:1121–1159, 2003 ), Blundell and Bond (Econ Rev 19-3:321–340, 2000 ) and other linear dynamic panel models as special cases. Copyright The Institute of Statistical Mathematics, Tokyo 2015

Suggested Citation

  • Kentaro Akashi & Naoto Kunitomo, 2015. "The limited information maximum likelihood approach to dynamic panel structural equation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 39-73, February.
  • Handle: RePEc:spr:aistmt:v:67:y:2015:i:1:p:39-73
    DOI: 10.1007/s10463-013-0438-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-013-0438-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-013-0438-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alonso-Borrego, Cesar & Arellano, Manuel, 1999. "Symmetrically Normalized Instrumental-Variable Estimation Using Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 36-49, January.
    2. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    3. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    4. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    5. Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
    6. Naoto Kunitomo, 2012. "An optimal modification of the LIML estimation for many instruments and persistent heteroscedasticity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 881-910, October.
    7. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2011. "On finite sample properties of alternative estimators of coefficients in a structural equation with many instruments," Journal of Econometrics, Elsevier, vol. 165(1), pages 58-69.
    8. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    9. Kazuhiko Hayakawa, 2006. "Efficient GMM Estimation of Dynamic Panel Data Models Where Large Heterogeneity May Be Present," Hi-Stat Discussion Paper Series d05-130, Institute of Economic Research, Hitotsubashi University.
    10. Akashi, Kentaro & Kunitomo, Naoto, 2012. "Some properties of the LIML estimator in a dynamic panel structural equation," Journal of Econometrics, Elsevier, vol. 166(2), pages 167-183.
    11. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    12. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    13. Naoto Kunitomo & Kentaro Akashi, 2010. "An Aysmptotically Optimal Modification of the Panel LIML Estimation for Individual Heteroscedasticity," CIRJE F-Series CIRJE-F-780, CIRJE, Faculty of Economics, University of Tokyo.
    14. Hayakawa, Kazuhiko, 2009. "A SIMPLE EFFICIENT INSTRUMENTAL VARIABLE ESTIMATOR FOR PANEL AR(p) MODELS WHEN BOTH N AND T ARE LARGE," Econometric Theory, Cambridge University Press, vol. 25(3), pages 873-890, June.
    15. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Polloni-Silva & Diogo Ferraz & Flávia de Castro Camioto & Daisy Aparecida do Nascimento Rebelatto & Herick Fernando Moralles, 2021. "Environmental Kuznets Curve and the Pollution-Halo/Haven Hypotheses: An Investigation in Brazilian Municipalities," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    2. Yun Bai & Zhenzhong Sun & Bo Zeng & Jianyu Long & Lin Li & José Valente Oliveira & Chuan Li, 2019. "A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2245-2256, June.
    3. Hsiao, Cheng & Zhou, Qiankun, 2015. "Statistical inference for panel dynamic simultaneous equations models," Journal of Econometrics, Elsevier, vol. 189(2), pages 383-396.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer, Alexander, 2022. "On the local power of some tests of strict exogeneity in linear fixed effects models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 49-74.
    2. Kentaro Akashi & Naoto Kunitomo, 2010. "The Limited Information Maximum Likelihood Approach to Dynamic Panel Structural Equations," CIRJE F-Series CIRJE-F-708, CIRJE, Faculty of Economics, University of Tokyo.
    3. Akashi, Kentaro & Kunitomo, Naoto, 2012. "Some properties of the LIML estimator in a dynamic panel structural equation," Journal of Econometrics, Elsevier, vol. 166(2), pages 167-183.
    4. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    5. Jan F. Kiviet, 2005. "Judging Contending Estimators by Simulation: Tournaments in Dynamic Panel Data Models," Tinbergen Institute Discussion Papers 05-112/4, Tinbergen Institute.
    6. Badi H. Baltagi, 2021. "Dynamic Panel Data Models," Springer Texts in Business and Economics, in: Econometric Analysis of Panel Data, edition 6, chapter 0, pages 187-228, Springer.
    7. Ryo Okui, 2017. "Misspecification in Dynamic Panel Data Models and Model-Free Inferences," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 283-304, September.
    8. Hsiao, Cheng & Zhou, Qiankun, 2015. "Statistical inference for panel dynamic simultaneous equations models," Journal of Econometrics, Elsevier, vol. 189(2), pages 383-396.
    9. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2005. "Bias Corrected Instrumental Variables Estimation for Dynamic Panel Models with Fixed E¤ects," Boston University - Department of Economics - Working Papers Series WP2005-024, Boston University - Department of Economics.
    10. Hayakawa, Kazuhiko, 2007. "Small sample bias properties of the system GMM estimator in dynamic panel data models," Economics Letters, Elsevier, vol. 95(1), pages 32-38, April.
    11. Arellano, Manuel, 2016. "Modelling optimal instrumental variables for dynamic panel data models," Research in Economics, Elsevier, vol. 70(2), pages 238-261.
    12. Kazuhiko Hayakawa, 2008. "On the Effect of Nonstationary Initial Conditions in Dynamic Panel Data Models," Hi-Stat Discussion Paper Series d07-245, Institute of Economic Research, Hitotsubashi University.
    13. Hahn, Jinyong & Hausman, Jerry & Kuersteiner, Guido, 2007. "Long difference instrumental variables estimation for dynamic panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 574-617, October.
    14. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    15. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    16. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    17. Yongfu Huang, 2011. "Private investment and financial development in a globalized world," Empirical Economics, Springer, vol. 41(1), pages 43-56, August.
    18. Angelica Gonzalez, 2007. "Angelica Gonzalez," Edinburgh School of Economics Discussion Paper Series 168, Edinburgh School of Economics, University of Edinburgh.
    19. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.
    20. Bao, Yong & Yu, Xuewen, 2023. "Indirect inference estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1027-1053.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:67:y:2015:i:1:p:39-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.