IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/111065.html
   My bibliography  Save this paper

Second-order refinements for t-ratios with many instruments

Author

Listed:
  • Matsushita, Yukitoshi
  • Otsu, Taisuke

Abstract

This paper studies second-order properties of the many instruments robust t-ratios based on the limited information maximum likelihood and Fuller estimators for instrumental variable regression models with homoskedastic errors under the many instruments asymptotics, where the number of instruments may increase proportionally with the sample size n, and proposes second-order refinements to the t-ratios to improve the size and power properties. Based on asymptotic expansions of the null and non-null distributions of the t-ratios derived under the many instruments asymptotics, we show that the second-order terms of those expansions may have non-trivial impacts on the size as well as the power properties. Furthermore, we propose adjusted t-ratios whose approximation errors for the null rejection probabilities are of order O(n −1 ) in contrast to the ones for the unadjusted t-ratios of order O(n −1/2 ), and show that these adjustments induce some desirable power properties in terms of the local maximinity. Although these results are derived under homoskedastic errors, we also establish a stochastic expansion for a heteroskedasticity robust t-ratio, and propose an analogous adjustment under slight deviations from homoskedasticity.

Suggested Citation

  • Matsushita, Yukitoshi & Otsu, Taisuke, 2023. "Second-order refinements for t-ratios with many instruments," LSE Research Online Documents on Economics 111065, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:111065
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/111065/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fujikoshi, Yasunori & Morimune, Kimio & Kunitomo, Naoto & Taniguchi, Masanobu, 1982. "Asymptotic expansions of the distributions of the estimates of coefficients in a simultaneous equation system," Journal of Econometrics, Elsevier, vol. 18(2), pages 191-205, February.
    2. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    3. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2011. "On finite sample properties of alternative estimators of coefficients in a structural equation with many instruments," Journal of Econometrics, Elsevier, vol. 165(1), pages 58-69.
    4. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    5. Chioda, Laura & Jansson, Michael, 2009. "Optimal Invariant Inference When The Number Of Instruments Is Large," Econometric Theory, Cambridge University Press, vol. 25(3), pages 793-805, June.
    6. Morimune, Kimio, 1983. "Approximate Distributions of k-Class Estimators When the Degree of Overidentifiability Is Large Compared with the Sample Size," Econometrica, Econometric Society, vol. 51(3), pages 821-841, May.
    7. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    8. Anderson, T W & Kunitomo, Naoto & Sawa, Takamitsu, 1982. "Evaluation of the Distribution Function of the Limited Information Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 50(4), pages 1009-1027, July.
    9. Rothenberg, Thomas J, 1988. "Approximate Power Functions for Some Robust Tests of Regression Coefficients," Econometrica, Econometric Society, vol. 56(5), pages 997-1019, September.
    10. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    11. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    12. Anderson, T. W. & Kunitomo, Naoto & Morimune, Kimio, 1986. "Comparing Single-Equation Estimators in a Simultaneous Equation System," Econometric Theory, Cambridge University Press, vol. 2(1), pages 1-32, April.
    13. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    14. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488.
    15. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    16. Hasselt, Martijn van, 2010. "Many Instruments Asymptotic Approximations Under Nonnormal Error Distributions," Econometric Theory, Cambridge University Press, vol. 26(2), pages 633-645, April.
    17. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    18. Morimune, Kimio, 1989. "Test in a Structural Equation," Econometrica, Econometric Society, vol. 57(6), pages 1341-1360, November.
    19. Phillips, Peter C B, 1977. "A General Theorem in the Theory of Asymptotic Expansions as Approximations to the Finite Sample Distributions of Econometric Estimators," Econometrica, Econometric Society, vol. 45(6), pages 1517-1534, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matsushita, Yukitoshi & Otsu, Taisuke, 2023. "Second-order refinements for t-ratios with many instruments," Journal of Econometrics, Elsevier, vol. 232(2), pages 346-366.
    2. Yukitoshi Matsushita & Taisuke Otsu, 2020. "Second-order refinements for t-ratios with many instruments," STICERD - Econometrics Paper Series 612, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    4. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    5. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    6. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    7. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    8. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    9. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    10. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    11. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2011. "On finite sample properties of alternative estimators of coefficients in a structural equation with many instruments," Journal of Econometrics, Elsevier, vol. 165(1), pages 58-69.
    12. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    13. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    14. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
    15. Naoto Kunitomo, 2012. "An optimal modification of the LIML estimation for many instruments and persistent heteroscedasticity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 881-910, October.
    16. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    17. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    18. Stanislav Anatolyev, 2013. "Instrumental variables estimation and inference in the presence of many exogenous regressors," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 27-72, February.
    19. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    20. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.

    More about this item

    Keywords

    many instruments; higher-order analysis; t-ratio;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:111065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.