IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v22y1987i1p79-93.html
   My bibliography  Save this article

Strong consistency and rates for recursive probability density estimators of stationary processes

Author

Listed:
  • Masry, Elias
  • Györfi, László

Abstract

Let {Xj}j = - [infinity][infinity] be a vector-valued stationary process with a first-order univariate probability density f on Rd. We consider the recursive estimation of f(x) from n observations {Xj}j=1n which need not be independent. For processes {Xj}j = - [infinity][infinity] which are asymptotically uncorrelated, we establish sharp rates for the almost sure convergence of kernel-type estimators fn(x).

Suggested Citation

  • Masry, Elias & Györfi, László, 1987. "Strong consistency and rates for recursive probability density estimators of stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 79-93, June.
  • Handle: RePEc:eee:jmvana:v:22:y:1987:i:1:p:79-93
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(87)90077-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
    2. Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
    3. Senoussi, R., 2000. "Uniform iterated logarithm laws for martingales and their application to functional estimation in controlled Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 89(2), pages 193-211, October.
    4. P. Cattiaux & José R. León & C. Prieur, 2015. "Recursive estimation for stochastic damping hamiltonian systems," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 401-424, September.
    5. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
    6. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    7. Lu, Zudi & Chen, Xing, 2004. "Spatial kernel regression estimation: weak consistency," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 125-136, June.
    8. Marc Hallin & Lanh Tran, 1996. "Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 429-449, September.
    9. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    10. Michel Carbon, 2008. "Asymptotic Normality of Frequency Polygons for Random Fields," Working Papers 2008-09, Center for Research in Economics and Statistics.
    11. Carbon, Michel & Garel, Bernard & Tran, Lanh Tat, 1997. "Frequency polygons for weakly dependent processes," Statistics & Probability Letters, Elsevier, vol. 33(1), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:22:y:1987:i:1:p:79-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.