IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i16p1756-1760.html
   My bibliography  Save this article

Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes

Author

Listed:
  • Schick, Anton
  • Wefelmeyer, Wolfgang

Abstract

Convergence rates and central limit theorems for kernel estimators of the stationary density of a linear process have been obtained under the assumption that the innovation density is smooth (Lipschitz). We show that smoothness is not required. For example, it suffices that the innovation density has bounded variation.

Suggested Citation

  • Schick, Anton & Wefelmeyer, Wolfgang, 2006. "Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1756-1760, October.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:16:p:1756-1760
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00138-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Hallin & Lanh Tran, 1996. "Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 429-449, September.
    2. Tran, Lanh Tat, 1992. "Kernel density estimation for linear processes," Stochastic Processes and their Applications, Elsevier, vol. 41(2), pages 281-296, June.
    3. Zudi Lu, 2001. "Asymptotic Normality of Kernel Density Estimators under Dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 447-468, September.
    4. Marc Hallin & Lanh T. Tran, 1996. "Kernel density estimation for linear processes: asymptotic normality and bandwidth selection," ULB Institutional Repository 2013/2055, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.
    2. Li, Yongming & Wei, Chengdong & Xing, Guodong, 2011. "Berry-Esseen bounds for wavelet estimator in a regression model with linear process errors," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 103-110, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2015. "Estimators in step regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 124-129.
    2. Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.
    3. Dimitris N. Politis & Peter F. Tarassenko & Vyacheslav A. Vasiliev, 2022. "Estimating Smoothness and Optimal Bandwidth for Probability Density Functions," Stats, MDPI, vol. 6(1), pages 1-20, December.
    4. Zudi Lu, 2001. "Asymptotic Normality of Kernel Density Estimators under Dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 447-468, September.
    5. Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
    6. Toshio Honda, 2009. "Nonparametric density estimation for linear processes with infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 413-439, June.
    7. Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in finite order," CeMMAP working papers 53/16, Institute for Fiscal Studies.
    8. Michel Harel & Jean-François Lenain & Joseph Ngatchou-Wandji, 2016. "Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 296-321, June.
    9. Degui Li & Oliver Linton & Zudi Lu, 2012. "A Flexible Semiparametric Model for Time Series," Monash Econometrics and Business Statistics Working Papers 17/12, Monash University, Department of Econometrics and Business Statistics.
    10. Lu, Zudi & Linton, Oliver, 2007. "Local Linear Fitting Under Near Epoch Dependence," Econometric Theory, Cambridge University Press, vol. 23(1), pages 37-70, February.
    11. Jenish, Nazgul & Prucha, Ingmar R., 2012. "On spatial processes and asymptotic inference under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 170(1), pages 178-190.
    12. Li, Degui & Linton, Oliver & Lu, Zudi, 2015. "A flexible semiparametric forecasting model for time series," Journal of Econometrics, Elsevier, vol. 187(1), pages 345-357.
    13. Hong, Seok Young & Linton, Oliver, 2020. "Nonparametric estimation of infinite order regression and its application to the risk-return tradeoff," Journal of Econometrics, Elsevier, vol. 219(2), pages 389-424.
    14. Li, Degui & Lu, Zudi & Linton, Oliver, 2012. "Local Linear Fitting Under Near Epoch Dependence: Uniform Consistency With Convergence Rates," Econometric Theory, Cambridge University Press, vol. 28(5), pages 935-958, October.
    15. Gao, Min & Yang, Wenzhi & Wu, Shipeng & Yu, Wei, 2022. "Asymptotic normality of residual density estimator in stationary and explosive autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    16. Livasoa Andriamampionona & Victor Harison & Michel Harel, 2024. "Non-Parametric Estimation of the Renewal Function for Multidimensional Random Fields," Mathematics, MDPI, vol. 12(12), pages 1-22, June.
    17. Degui Li & Oliver Linton & Zudi Lu, 2010. "Loch Linear Fitting under Near Epoch Dependence: Uniform Consistency with Convergence Rate," STICERD - Econometrics Paper Series 549, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    18. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    19. Ho, Hwai-Chung, 1995. "On the strong uniform consistency of density estimation for strongly dependent sequences," Statistics & Probability Letters, Elsevier, vol. 22(2), pages 149-156, February.
    20. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:16:p:1756-1760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.