IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v68y2004i2p125-136.html
   My bibliography  Save this article

Spatial kernel regression estimation: weak consistency

Author

Listed:
  • Lu, Zudi
  • Chen, Xing

Abstract

In this paper, we introduce a kernel method to estimate a spatial conditional regression under mixing spatial processes. Some preliminary statistical properties including weak consistency and convergence rates are investigated. The sufficient conditions on mixing coefficients and the bandwidth are established to ensure distribution-free weak consistency, which requires no assumption on the regressor and allows the mixing coefficients decreasing to zero slowly. However, to achieve an optimal convergence rate, some requirements on the regressor and the decreasing rate of mixing coefficients tending to zero are needed.

Suggested Citation

  • Lu, Zudi & Chen, Xing, 2004. "Spatial kernel regression estimation: weak consistency," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 125-136, June.
  • Handle: RePEc:eee:stapro:v:68:y:2004:i:2:p:125-136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00291-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannides, D. & Roussas, G. G., 1987. "Note on the uniform convergence of density estimates for mixing random variables," Statistics & Probability Letters, Elsevier, vol. 5(4), pages 279-285, June.
    2. Kulkarni, P. M., 1992. "Estimation of parameters of a two-dimensional spatial autoregressive model with regression," Statistics & Probability Letters, Elsevier, vol. 15(2), pages 157-162, September.
    3. Marc Hallin & Michel Carbon & Lanh T. Tran, 1996. "Kernel density estimation on random fields: the L1 theory," ULB Institutional Repository 2013/2065, ULB -- Universite Libre de Bruxelles.
    4. Masry, Elias & Györfi, László, 1987. "Strong consistency and rates for recursive probability density estimators of stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 79-93, June.
    5. Tran, L. T. & Yakowitz, S., 1993. "Nearest Neighbor Estimators for Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 23-46, January.
    6. Marc Hallin & Zudi Lu & Lanh T. Tran, 2001. "Density estimation for spatial linear processes," ULB Institutional Repository 2013/2109, ULB -- Universite Libre de Bruxelles.
    7. Tran, Lanh Tat, 1990. "Kernel density estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 34(1), pages 37-53, July.
    8. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    9. Boente, Graciela & Fraiman, Ricardo, 1988. "Consistency of a nonparametric estimate of a density function for dependent variables," Journal of Multivariate Analysis, Elsevier, vol. 25(1), pages 90-99, April.
    10. P. M. Robinson, 1987. "Time Series Residuals With Application To Probability Density Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 329-344, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenish, Nazgul, 2012. "Nonparametric spatial regression under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 167(1), pages 224-239.
    2. Hongxia Wang & Jinde Wang, 2009. "Estimation of the trend function for spatio-temporal models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 567-588.
    3. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
    4. Bouabsa Wahiba, 2022. "Unform in Bandwith of the Conditional Distribution Function with Functional Explanatory Variable: The Case of Spatial Data with the K Nearest Neighbour Method," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 26(2), pages 30-46, June.
    5. Mohammed Attouch & Ali Laksaci & Nafissa Messabihi, 2017. "Nonparametric relative error regression for spatial random variables," Statistical Papers, Springer, vol. 58(4), pages 987-1008, December.
    6. Rongrong Xu & Jinde Wang, 2008. "-estimation for spatial nonparametric regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(6), pages 523-537.
    7. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    8. Tang Qingguo, 2013. "B-spline estimation for semiparametric varying-coefficient partially linear regression with spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 361-378, June.
    9. El Machkouri, Mohamed & Es-Sebaiy, Khalifa & Ouassou, Idir, 2017. "On local linear regression for strongly mixing random fields," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 103-115.
    10. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    11. Jia Chen & Li-Xin Zhang, 2010. "Local linear M-estimation for spatial processes in fixed-design models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 319-340, May.
    12. Zhengyan Lin & Degui Li & Jiti Gao, 2009. "Local Linear M‐estimation in non‐parametric spatial regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 286-314, May.
    13. Hongxia Wang & Jinde Wang & Bo Huang, 2012. "Prediction for spatio-temporal models with autoregression in errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 217-244.
    14. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
    15. Kuangyu Wen & Ximing Wu & David J. Leatham, 2021. "Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 349-366, September.
    16. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    17. Chen Jia & Zhang Lixin & Li Degui, 2008. "Spatial local M-estimation under association," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(1), pages 11-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    2. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    3. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
    4. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
    5. Michel Carbon, 2008. "Asymptotic Normality of Frequency Polygons for Random Fields," Working Papers 2008-09, Center for Research in Economics and Statistics.
    6. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
    7. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11979, University Library of Munich, Germany, revised Jul 2005.
    8. Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
    9. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    10. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
    11. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    12. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
    13. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.
    14. Carbon, Michel & Garel, Bernard & Tran, Lanh Tat, 1997. "Frequency polygons for weakly dependent processes," Statistics & Probability Letters, Elsevier, vol. 33(1), pages 1-13, April.
    15. Tsung-Lin Cheng & Hwai-Chung Ho & Xuewen Lu, 2008. "A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z 2," Journal of Theoretical Probability, Springer, vol. 21(2), pages 267-286, June.
    16. Biau, Gérard, 2002. "Optimal asymptotic quadratic errors of density estimators on random fields," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 297-307, December.
    17. Mohamed El Machkouri, 2013. "On the asymptotic normality of frequency polygons for strongly mixing spatial processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 193-206, October.
    18. Marc Hallin & Lanh Tran, 1996. "Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 429-449, September.
    19. Zhenyu Jiang & Nengxiang Ling & Zudi Lu & Dag Tj⊘stheim & Qiang Zhang, 2020. "On bandwidth choice for spatial data density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 817-840, July.
    20. Wang, Yizao & Woodroofe, Michael, 2014. "On the asymptotic normality of kernel density estimators for causal linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 201-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:68:y:2004:i:2:p:125-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.