Author
Listed:
- Leigh R Bowman
- Gustavo S Tejeda
- Giovanini E Coelho
- Lokman H Sulaiman
- Balvinder S Gill
- Philip J McCall
- Piero L Olliaro
- Silvia R Ranzinger
- Luong C Quang
- Ronald S Ramm
- Axel Kroeger
- Max G Petzold
Abstract
Background: Worldwide, dengue is an unrelenting economic and health burden. Dengue outbreaks have become increasingly common, which place great strain on health infrastructure and services. Early warning models could allow health systems and vector control programmes to respond more cost-effectively and efficiently. Methodology/Principal Findings: The Shewhart method and Endemic Channel were used to identify alarm variables that may predict dengue outbreaks. Five country datasets were compiled by epidemiological week over the years 2007–2013. These data were split between the years 2007–2011 (historic period) and 2012–2013 (evaluation period). Associations between alarm/ outbreak variables were analysed using logistic regression during the historic period while alarm and outbreak signals were captured during the evaluation period. These signals were combined to form alarm/ outbreak periods, where 2 signals were equal to 1 period. Alarm periods were quantified and used to predict subsequent outbreak periods. Across Mexico and Dominican Republic, an increase in probable cases predicted outbreaks of hospitalised cases with sensitivities and positive predictive values (PPV) of 93%/ 83% and 97%/ 86% respectively, at a lag of 1–12 weeks. An increase in mean temperature ably predicted outbreaks of hospitalised cases in Mexico and Brazil, with sensitivities and PPVs of 79%/ 73% and 81%/ 46% respectively, also at a lag of 1–12 weeks. Mean age was predictive of hospitalised cases at sensitivities and PPVs of 72%/ 74% and 96%/ 45% in Mexico and Malaysia respectively, at a lag of 4–16 weeks. Conclusions/Significance: An increase in probable cases was predictive of outbreaks, while meteorological variables, particularly mean temperature, demonstrated predictive potential in some countries, but not all. While it is difficult to define uniform variables applicable in every country context, the use of probable cases and meteorological variables in tailored early warning systems could be used to highlight the occurrence of dengue outbreaks or indicate increased risk of dengue transmission.
Suggested Citation
Leigh R Bowman & Gustavo S Tejeda & Giovanini E Coelho & Lokman H Sulaiman & Balvinder S Gill & Philip J McCall & Piero L Olliaro & Silvia R Ranzinger & Luong C Quang & Ronald S Ramm & Axel Kroeger & , 2016.
"Alarm Variables for Dengue Outbreaks: A Multi-Centre Study in Asia and Latin America,"
PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
Handle:
RePEc:plo:pone00:0157971
DOI: 10.1371/journal.pone.0157971
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0157971. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.